ppoppo [374086] · MS 2011 · 쪽지

2011-05-07 11:27:49
조회수 395

미분가능성에 관한 질문요

게시글 주소: https://a.orbi.kr/0001105276

f(x)= x^2-1 (0≤x<1)

2/3(x^3-1) (x≥1)



ㄱ.f(x)=1에서 미분가능하다

라는 문제를 풀때 각각 두개의 식에 x=1일때 같고 두개의 식 미분해서 1대입해서 같다 라고 놓고 해설지가 풀고있는데요



미분계수 자체의 정의가 연속함수이고 좌극한과 우극한값이 같아야만

(lim h->0+) : lim(a+h)-f(a)/h = lim h->0- : lim(a+h)-f(a)/h

위의 식처럼 좌우극한값이 모두 같아야 f`(a)로 정의되는데

x^2-1(0≤x<1) 이식 자체에다가 f`(1) 넣는다는 자체가 모순아닌가요? x^2-1의 미분계수의 우극한 자체가 없으니깐요 (x=1에서 x^2-1정의되어있지 않음)

즉 우극한값을 따지지 못하잖아요 x가 1과 같은순간 함수는 2/3(x^3-1) (x≥1) 으로 바뀌어 버리니깐요 미분계수의 우극한과 좌극한중 둘다 있어야 `(프라임) 라는 공식 사용가능할텐데요 ...



어떻게 받아들여야 할까요 ............

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • Yoonaul · 362874 · 11/05/07 14:06 · MS 2010

    뭐가 모순인가요... ㅎ x<1 범위에서는 좌극한을 따지셔야지 우극한을 왜...
    함수에 대한 이해가 안되시는듯한데요..

  • 난죄수생 · 347659 · 11/05/07 21:39 · MS 2010

    함수이해가 필요
    f(x)= x^2-1 (0≤x<1)
    2/3(x^3-1) (x≥1)
    g(x)=x^2-1, h(x)=2/3(x^3-1)
    라 면 f`(x) x=1에서 좌극한은 g`(1)이고 우극한은h`(x) 이니 같아서 f`(1)이 정의 됨

  • 강민경일루와 · 338005 · 11/05/08 00:13 · MS 2010

    fx에 a 넣은게 같고

    f'x에 a 넣은게 같으면

    함수 fx는 a 에서 연속, 미분가능요