귀요미은비 [348352] · MS 2010 · 쪽지

2011-06-30 16:08:53
조회수 230

수학문제좀질문할께요 풀어주세용~~~~~~~~~~~~

게시글 주소: https://a.orbi.kr/0001298657

방정식 blna=alnb을 만족하는 a,b에 대해 a의 값의 범위가 m<a<n일떄 mn의값은?(단,a<b)

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 나카렌 · 278738 · 11/06/30 22:23 · MS 2018

    우선 a, b는 ln의 정의에서 양수이므로 lna나 lnb 중 하나가 0이면 다른 것도 0이고, 이 경우는 a=b=1가 되어서 문제의 조건과 맞지 않아요. 따라서, 이 문제에서는 a, b, lna, lnb 모두 양수라고 볼 수 있겠죠. 이 때 식을 정리하면, (lna)/a=(lnb)/b가 되네요.
    이 때, [(0,0)과 (a,lna)사이의 기울기=(0,0)과 (b,lnb)사이의 기울기]라고 위 식을 해석할 수 있네요. 그렇다는 건 (0,0), (a,lna), (b,lnb)가 한 직선 위에 있다는 거고, 원점을 지나는 직선과 y=lnx의 그래프가 두 점에서 만나는데 이 때 교점 2개의 x좌표가 a, b라는 것이죠. 그런데 원점을 지나고 lnx에 접하는 직선은 y=x/e 이고 접점이 (e,1)이니까, 원점을 지나면서 y=lnx와 두 점에서 만나는 직선의 기울기를 k라 한다면 0

  • 나카렌 · 278738 · 11/06/30 22:34 · MS 2018

    ad=bc를 b/a = d/c, (b-0)/(a-0)=(d-0)/(c-0)으로 정리하여 [(0,0)과 (a,b)사이의 기울기=(0,0)과 (c,d)사이의 기울기]로 해석하고, 이를 다시 [(0,0)과 (a,b)와 (c,d)가 한 직선 위에 있다]로 해석하는 흐름을 잘 알아두세요.(여기서 '기울기가 같다->한 직선 위에 있다'라는 아이디어는 좌표평면이나 좌표공간 위의 문제를 풀면서 접했겠고, ad=bc를 기울기로 해석하는 걸 잘 보아 두면 될 거에요)
    위와 같이 해석했다면 그러면 y=lnx의 그래프를 생각해 보고 '직선'을 같이 생각해야 하니까 접선, 할선, 교점 등등을 생각하게 되고, 위의 풀이에 도달하겠죠. 이러한 흐름(문제에 주어진 조건을 기하적으로 해석한 뒤, 문제 전체를 기하적으로 바라보고 풀이를 잡아내기)도 잘 봐 두시고요.

    ad=bc를 위에서 기울기로 해석했는데, 다른 방향으로 해석해보면 다음처럼 생각할 수 있어요. ad=bc는 ad-bc=0과 같고, 이는 흔히 나오는 역행렬이 없을 조건과 같은 거고, 이는 다시 두 직선이 평행하거나 일치한다는 것과 일치하고, 다시 생각해 보면, ax+by+m=0의 '법선벡터'가 (a,b)이고 cx+dy+n=0의 '법선벡터'가 (c,d)이기에 두 직선이 평행하거나 일치한다는 말은 법선벡터가 평행하다는 말이 되죠. 이건 좌표공간에서 두 평면이 평행하거나 일치할 조건과도 같은 것이고요. 이렇게 ad=bc라는 조건이 가진 기하적인 풍부한 의미를 '잘' 알고 이걸 원활하게 이용할 수 있도록 공부하면 다른 문제를 풀 때에도 도움이 될 거라고 봐요. (물론, 대학교 때 수학을 계속 깊이 배우면 기하적 의미가 또 추가된답니다)

    마지막 부분, 두 점에서 만난다는 조건에서 기울기의 범위를 찾는 풀이는 교과서에 으레 나오는 예제와 거의 같으니까, 그것과도 비교해 보면 잘 이해할 수 있겠죠. 그런 다음 a의 범위를 이끌어내는 건, 그래프를 그려 보면서 생각해 보면 이해할 수 있을 거에요.