이 문제는 어떻게 풀어야 하죠;;
게시글 주소: https://a.orbi.kr/0001527291
제가 답답해요 ㅜ확실히 알았으면 좋겠어요;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
니야호 0
귀여워
-
ㅔ 0
-
물화, 화생, 물생 하다가 도저히 각이 안보이면 과탐 하나를 지구로 바꿨음. 지금...
-
얼버기 0
-
퇴근하고싶다 4
1시간만 버티면 퇴근이야
-
수능 끝나니깐 2
수능 수학이 재밌네..
-
지듣노 0
종종 릴스로 나오더라 잔잔한게 은근 듣기좋네
-
요즘 파폭 모바일도 그렇고 컴터도 그렇고 오류 좀 많지 않아…? 어디가 문제인거지…?
-
요즘은 살짝 재밌는거 같기도 해 나 진짜 기하라이팅 당한듯
-
얼버기임 아니면 아직 안잔거임?
-
중학생? 고등학생? 언젠지도 모르겠네 내년 겨울엔 한번 타러가볼까
-
새벽 기상 3
아침 스키타기 위해 일찍 기상!
-
얼버깅 2
라랄랄라
-
슬슬 사람 많네 2
이제 나도 슬슬 본가 내려가야지
-
선지의 조어방식이랑 해석하기 까다로운 상황 이거 두가지에 대해 얘기하더라 7번,...
-
아 위경련 12
살려주세요죽을것같네
-
(소신발언)피코 은퇴해야 되는 건 맞는데 | 오르비
-
특히 문학은 더 만점을 위해서라면 지푸라기라도 손에 잡아야지 물론 이러고도 결국...
-
ㅁㅊ..
-
선생님들, 서울대 정시 내신반영 관련하여 질문이 있습니다. 2
내신을 반영할 때 국수영탐구한국사 등의 주요 과목만 반영하는지, 한문, 정보 등의...
-
헤헤 5
은테로 바뀌었나요~!
-
조금만 더 열심히 했으면 좋았을텐데 살면서 느는게 후회밖에 없네… 그래도 올수만큼은...
-
부조리 0
이 인간은 무엇인지 알 수 없는 희망을 향해 계속 서두르고 있다. 하지만, 부조리한...
-
기출분석잘하면 연계공부안했는데 연계지문 나와도 비연계라 치고 보면 풀려서 필요성을 못느끼겠더라
-
제자야 일어나라 2
넵.
-
노래를 들을때 0
가수의 목소리를 제일 신경쓰는거 같아 난 나도 목소리가 좋으면 좋을텐데 부럽네 정말
-
솔직히 재밌고 쉬운데 진짜 꿀단지인데 사문 생윤 선택할때마다 마음이 아파
-
사실 제제는 상관없으니 뭐든 만표 150 찍혔으면 좋겠어요 22때처럼 인문이랑...
-
조용하네 2
거리도, 오르비도 전부 이제 내차지인가
-
만원 할인받겠다고 2시간이상 줄서는사랑 이해안됨
-
우울하다 우울해 0
수능끝나고 하는게 없으니 더 그런거 같기도… 뭐라도 하고 싶은데 뭘 해야할지 모르겠어
-
내가 국어를개못해서 그런지 노래가사가 이해가안됨.. 우린 따로~ 필요할 때가 있어...
-
쓰레드가 뭐임 1
쓰레드가 부정적 늬앙스인것같은데 왜지
-
술 한잔 했어요 0
그대가 보고 싶어서
-
피코가 잘못한건맞지만 12
그렇게까지 큰 잘못을 했을까싶다,,, 나는 굳이 헐뜯고 싶은 생각은 안드네
-
연세의 수치 1
롤로노아 피코
-
사서 유빈이에 올림 ㅅㄱ
-
돈을 또 얼마나 땡긴 거임
-
4대 크루 통합으론 모자랐던거니....?
-
기차지나간당 11
부지런행
-
어디 가실거 같나요? 그냥 궁금해서 투표 올려봅니다
-
설대식으로 397점이어도 서울대 인문계열 떨어짐??
-
나는 내가 4
빛나는 별인 줄 알앗어요
-
친구 이제 대학교 3학년인데 갑자기 배우 회사 들어간다던데 학과는 딱히 상관...
-
http://www.newsagora.co.kr/news/articleView.htm...
-
계정은 남겨둘까
-
엄마몰래 라면끓여먹기 아빠가 찍어준거라고 해명하는게 겁나웃김ㅋㅋㅋㅋ
2번/?
네;;;저는 ㄴ, ㄷ했는데 이쪽은 잘 모르겠어요//
오오 이 문제 맘에듬...
ㄴ빼고 다 거짓이네요. 함수에 대한 감 혹은 축적된 지식이 있어야 풀기 쉬운 문제라서 보기보다 난이도가 높다고 할 수 있겠네요.
ㄱ의 경우 f(x) = |x| 로 두면 반례가 됩니다. f(x)가 x = 0 에서 미분불가능한데 저 극한을 어떻게 생각하시냐는 분들, 일단 대입해서 계산은 해 보세요! 저 극한은 미분계수의 정의가 아닙니다.
ㄴ의 경우, f(x)가 연속이므로 f(0) = lim_{h→0} f(h) = lim_{h→0} (f(h)/h)·h = 0·0 = 0 이 됩니다. 그러면 0 = lim_{h→0} f(h)/h = lim_{h→0} (f(h) - f(0))/h 이므로, f'(0) 이 존재하고 그 값이 0이 됩니다.
ㄷ의 의미는 말 그대로, f(x)의 그래프가 두 직선 y = 2x + f(0)과 y = -2x + f(0) 사이에 끼어있다는 의미일 뿐 그 이상도 이하도 아닙니다. 따라서 그래프가 이 두 직선 사이에 끼어 있으면서 원점에서 미분이 안되는 함수를 찾으면 되는데, f(x) = |x|가 다시 반례가 됩니다.
ㄱ은 이해가 잘 안되네요... 물론 반례 넣어서 계산하면 틀린거 알겠지만
식변형하면 저 극한은 분명 f'(0)을 가리키고 있는데 왜 저런 일이 생기는걸까요?
사람들이 명제를 볼 때 보통 착각하는 것 중의 하나는, 어떤 명제와 그 역을 동일시하는 것입니다. 즉 우리는
"f'(0)이 존재하면, 즉 lim_{h→0} (f(h) - f(0))/h 가 존재하면,
lim_{h→0} (f(h) - f(-h))/2h
= lim_{h→0} (f(h) - f(0))/2h + lim_{h→0} (f(0) - f(-h))/2h
= (1/2)f'(0) + (1/2)f'(0)
= f'(0)
이다."
라는 사실을 알고 있습니다. 하지만 그렇다고 해서 우리가 이 과정을 거꾸로 타는 것이 불가능하다는 것, 즉 이 명제의 역이 거짓이라는 것이 보장되는 것은 아닙니다. 실제로 우리는 반례를 갖고 있으니까요. 즉, 쉽게 말하면 이런 이야기입니다:
lim f(x) 와 lim g(x) 가 수렴하면 lim f(x)+g(x) 도 수렴하고 그 극한값은 각각의 극한값의 합이다.
는 참이지만, lim f(x)+g(x) 가 수렴한다고 lim f(x) 와 lim g(x) 가 수렴한다고 감히 함부로 말할 수 없는 것이지요.
아하... 감사합니다.
ㄷ은 어떻게 그렇게 생각해 낼 수 있죠??
|f(h) - f(0)| ≤ |2h|
⇔ -|2h| ≤ f(h) - f(0) ≤ |2h|
⇔ -|2h|+f(0) ≤ f(h) ≤ |2h|+f(0)
입니다. 그리고 잘 생각해보시면, 부등식
-|2x|+f(0) ≤ y ≤ |2x|+f(0)
가 나타내는 영역은 정확하게 두 직선 y = 2x + f(0) 과 y = -2x + f(0) 사이에 끼인 영역임을 알 수 있습니다.
아...매번 감사합니다..
답이 뭔가요? 맞다면 조금은 도움 드릴수도..
ㄴ 이예요
ㄴ만 0에서의 미분계수에 해당하는 극한값을 전제로부터 생각할수있고
나머지는 그 극한값을 도출 불가능 한것 같네요 ..
오늘 풀었는데
ㄱ,ㄴ 은 뭐 여타 다른문제랑 같고
ㄷ은 반례찾는게 집중해서 풀었어요 f(x)=IxI
답은 ㄴ 입니다.. 확실히 좀 알려주세요;;;;;ㅜㅜ
ㄴ,ㄷ 인줄알았는데.ㅜ;
생각해보니 ㄷ은 그냥안되는게 미분가능함수도아니고 연속함수니까..
ㄴ은 미분계수의 정의 생각하면 o.k되는문항이고...
가정 -> 결과로 나누어서보면
간단하게 얘기해서 ㄴ을 제외한 모든 선택지의 가정이 도함수에 관한 정의가 안되있는데
결과가 f' 즉, 도함수를 들먹이는거라 다 틀린거에요
ㄴ은 f가 연속으로 주어져있어서 가정 자체가 도함수 정의라 맞는거구요
연속이아니라면 ㄴ도 틀린 보기입니다
반례 안들고는 못푸나요???
ㄱ은 평균값 정리에서 미분가능성이 먼저 가정되어야만 사용할 수 있다는걸 알려주는 것이구요
ㄴ은 연속일 때 도함수값의 정의를 묻고 있는거구요
ㄷ은 미분가능하지도 확정되지않았는데 f' 들먹이면 무조건 틀리다는걸 알려주는 거에요
ㄷ에서 윗분들이 자꾸 반례찾으시려고 하는데 반례를 찾으시려는 생각을 한다기보다 그냥 미분이 안되면 뒤에 있는 f'(0) 값 자체가 말이 안됩니다
물론 반례를 안 찾고도 참거짓이 보인다면 좋지만, 정말로 어려운 문제는 다시 그 허점을 노릴 수도 있습니다. 예를 들어서 ㄷ이 만약
|f(h) - f(0)| ≤ 2h²
와 같이 바뀌어나왔다면, f(x)는 x = 0 에서 미분가능하고 f'(0) = 0 입니다. (간단한 샌드위치 정리의 응용으로써 따라나옵니다. 그리고 제가 기억하기론 실제 이런 조건을 내걸었던 기출문제도 있었던 걸로 기억합니다.)
그러니 가장 좋은건 실제로 상황을 봐야된다는 것이지요.
간혹 반례 드는걸 뭔가 "좋은 풀이가 아니다" 라고 생각하시려는 경향이 있는데, 사실 반례가 왜 나오는지를 안다는 것은 주어진 명제가 어떤 결함을 갖고 있는지를 이해한다는 것과 같은 말로, 높은 수준의 이해를 필요로 합니다. 보통 그런 수준을 기대하기 힘들기 때문에 반례를 최대한 피하고 단계적으로 감을 잡도록 유도하는 것이지, 결코 반례가 나쁜 풀이가 아닙니다. 오히려 논리적으로는 반례를 드는 것이 정확한 증명이 됩니다. ('모든 ~ 에 대하여 ~ 이다' 라는 명제의 부정은 '어떤 ~가 있어 ~가 아니다' 라는 것, 즉 반례가 있다는 것입니다.)
우와.. 그건 굉장히 허를 찌르는 문제인거같네요. 역시 반례를 찾는게 중요하겠군요.
정의되지도 않는데 범위를 들먹이는거 자체가 이미 말이 안되는거죠 반례 찾으실 필요 없어요
당연히 명제가 거짓일 것 같다는 논리적 추론은 선행될 것입니다. 그러나 그것이 명확하지 않거나 보다 확실한 실증적 근거가 요구될 경우, 제한된 조건을 충족하는 범위 안에서 반례를 찾는 것은 도움이 되고 가치 있는 시도라고 생각합니다. 물론 시간이 매우 촉박하다면 넘어가야 겠지만, 특히 수능같은 큰 시험에서 정확한 반례를 들어놓으면 큰 도움이 될 것입니다.