이 문제는 어떻게 풀어야 하죠;;
게시글 주소: https://orbi.kr/0001527291

제가 답답해요 ㅜ확실히 알았으면 좋겠어요;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아직 멀었네요 ㅠㅠ
-
아무리쉬웠다고해도 작수4따리가 풀만한 문제는 아니지안나..
-
옛날에 수업 들어 오셔서 인강 처음 시작했다고 자랑하시던게 생각나네요,,
-
2007년생 특 2
태어났을때부터 첫번째 수능까지 6명의 대통령을 경험 갓난아기때: 노무현 정부...
-
210930 22예비30 180630 풀이 다 이상해 ㅠㅠㅠ 이래서 듣는거긴...
-
현정훈 라이브 0
물리 현정훈이 유명하다 해서 한 번 들어보고 싶습니다. 지금 강민웅 특특 듣고 있고...
-
검고 만점이면 AA 컷이면 CC 이런거임??? 이 게 뭐 노
-
시간없으면 0
뉴런보단 한완수임?ㅇㅇ
-
오랜만에 돌아온 범바오 관련 게시글
-
윤성훈 현강 날짜 목요일이랑 바꾸실 금요일 현강생 찾아요ㅠㅠㅠㅠㅠ 0
다른 학원 스케쥴 때문에 목요일 말고 금요일로 바꿔야 하는데 대기가...
-
큰 종이로 뭐하나 뽑고 싶은데 종이 작으니까 글씨 다 씹힘
-
근데 이번 상위권 정시는 ㄹㅇ작년보다 상황 안좋은거죠? 2
하 심란하네
-
확통 한완수 0
어떤가용
-
작수 공통-1 미적-2 틀 얼마나 머리 싸매고 고민해야함…? 바로 해설지 보는...
-
나는 생1 고인물인데 고정1은 거의 맞긴한데 내가 50을 못맞거나 백분위...
-
김범준T가 요즘 엄청 핫하던데, 이렇게 인기가 많은 이유가 무엇인가요? 제가 건너...
-
우리학교지만 건물은 ㄹㅇ 신식이라 좋네
-
성욕 컨트롤 어떻게 함 12
한 번 생각나면 아예 공부를 할 수가 없던데 이럴 때마다 집 가서 하고 올 수도...
-
늙어서 서러워
-
1월말부터 시작했는데 벌써 300점되가는데...
-
확통은 0
현우진이 고트인가 아님 한완수 볼까요?
-
언매가 상당히 재밌는듯 ㅇㅅㅇ
-
ㅅㅂ
-
여러분의 덕코로 웃음을 선사하는 닉네임으로 바꾸겠습니다
-
n제 훈수 좀요 5
n티켓 수2 눈으로 봤는데 하루 당 문제 8개인데 8문제 중에 1문제 정도 제외하고...
-
아 우리 노베 과외순이 성적 어케 올리지..
-
일단 내가 술술 풀정도면 상당히 쉬웠단건데 난 수학실력 ㅈㄴ 올라간줄 알았지 22번이 잘풀리길래..
-
카메라 사고싶어 6
니콘 zfc...
-
잇올 순공빌보드 1
이런데 왜 3월 못들었지....
-
ㄹㅇ...
-
지구 사탐런 5
현역이고 고2때 지구 개념기출 까지 다 했는데(기출 3번씩 풀고 수특 수완 3개년치...
-
한지 VS 세지 0
수능최저 때문에 4등급만 맞추면 되는데 추천 좀 해주세요
-
흔히들 말씀하시는 단과학원은 원비가 얼마나 하나요???
-
자유 : 없음 민주주의 : 없음 니게tv 개국 163일차
-
푸씨 13
ㅡ 푸씨 베이베 맘을 받아줘~
-
노이즈캔슬 안 써요 아이폰 쓰는 중이면 그냥 닥 에어팟이 맞을까요,,?
-
화1 지1 5
일단 과탐은 해야하고 2등급만 받아도 괜찮아요. 화1은 내신으로 했고 잘 맞았는데...
-
진심 가능함? n제 50문제씩 벅벅 푼다고? 어떻게??
-
중간에 계산식 몇개는 지웠음 251120은 못풀겠는데…
-
이거 0
되는 거임?
-
김종익 현돌 0
기시감이랑 잘노기랑 겹치는 포지션인가요? 기시감 끝내고 뭘 해야 좋을까요?
-
학원에 전화해서 쌤이 토요일 수업하는 관, 시간 알아낸 후 교무실? 같은 곳...
-
은테달고 싶어졌음 ㄹㅇ
-
댓글로 개지랄 해주세요
-
f(x)+x의 부호판별을 통해 0에서만 부호변화가 있다를 판별하고 k에 대한식으로...
-
대학입시라는 시험을 준비하면서 나타날 수 있는 다양한 인간 군상과 인터넷에서 엿볼...
2번/?
네;;;저는 ㄴ, ㄷ했는데 이쪽은 잘 모르겠어요//
오오 이 문제 맘에듬...
ㄴ빼고 다 거짓이네요. 함수에 대한 감 혹은 축적된 지식이 있어야 풀기 쉬운 문제라서 보기보다 난이도가 높다고 할 수 있겠네요.
ㄱ의 경우 f(x) = |x| 로 두면 반례가 됩니다. f(x)가 x = 0 에서 미분불가능한데 저 극한을 어떻게 생각하시냐는 분들, 일단 대입해서 계산은 해 보세요! 저 극한은 미분계수의 정의가 아닙니다.
ㄴ의 경우, f(x)가 연속이므로 f(0) = lim_{h→0} f(h) = lim_{h→0} (f(h)/h)·h = 0·0 = 0 이 됩니다. 그러면 0 = lim_{h→0} f(h)/h = lim_{h→0} (f(h) - f(0))/h 이므로, f'(0) 이 존재하고 그 값이 0이 됩니다.
ㄷ의 의미는 말 그대로, f(x)의 그래프가 두 직선 y = 2x + f(0)과 y = -2x + f(0) 사이에 끼어있다는 의미일 뿐 그 이상도 이하도 아닙니다. 따라서 그래프가 이 두 직선 사이에 끼어 있으면서 원점에서 미분이 안되는 함수를 찾으면 되는데, f(x) = |x|가 다시 반례가 됩니다.
ㄱ은 이해가 잘 안되네요... 물론 반례 넣어서 계산하면 틀린거 알겠지만
식변형하면 저 극한은 분명 f'(0)을 가리키고 있는데 왜 저런 일이 생기는걸까요?
사람들이 명제를 볼 때 보통 착각하는 것 중의 하나는, 어떤 명제와 그 역을 동일시하는 것입니다. 즉 우리는
"f'(0)이 존재하면, 즉 lim_{h→0} (f(h) - f(0))/h 가 존재하면,
lim_{h→0} (f(h) - f(-h))/2h
= lim_{h→0} (f(h) - f(0))/2h + lim_{h→0} (f(0) - f(-h))/2h
= (1/2)f'(0) + (1/2)f'(0)
= f'(0)
이다."
라는 사실을 알고 있습니다. 하지만 그렇다고 해서 우리가 이 과정을 거꾸로 타는 것이 불가능하다는 것, 즉 이 명제의 역이 거짓이라는 것이 보장되는 것은 아닙니다. 실제로 우리는 반례를 갖고 있으니까요. 즉, 쉽게 말하면 이런 이야기입니다:
lim f(x) 와 lim g(x) 가 수렴하면 lim f(x)+g(x) 도 수렴하고 그 극한값은 각각의 극한값의 합이다.
는 참이지만, lim f(x)+g(x) 가 수렴한다고 lim f(x) 와 lim g(x) 가 수렴한다고 감히 함부로 말할 수 없는 것이지요.
아하... 감사합니다.
ㄷ은 어떻게 그렇게 생각해 낼 수 있죠??
|f(h) - f(0)| ≤ |2h|
⇔ -|2h| ≤ f(h) - f(0) ≤ |2h|
⇔ -|2h|+f(0) ≤ f(h) ≤ |2h|+f(0)
입니다. 그리고 잘 생각해보시면, 부등식
-|2x|+f(0) ≤ y ≤ |2x|+f(0)
가 나타내는 영역은 정확하게 두 직선 y = 2x + f(0) 과 y = -2x + f(0) 사이에 끼인 영역임을 알 수 있습니다.
아...매번 감사합니다..
답이 뭔가요? 맞다면 조금은 도움 드릴수도..
ㄴ 이예요
ㄴ만 0에서의 미분계수에 해당하는 극한값을 전제로부터 생각할수있고
나머지는 그 극한값을 도출 불가능 한것 같네요 ..
오늘 풀었는데
ㄱ,ㄴ 은 뭐 여타 다른문제랑 같고
ㄷ은 반례찾는게 집중해서 풀었어요 f(x)=IxI
답은 ㄴ 입니다.. 확실히 좀 알려주세요;;;;;ㅜㅜ
ㄴ,ㄷ 인줄알았는데.ㅜ;
생각해보니 ㄷ은 그냥안되는게 미분가능함수도아니고 연속함수니까..
ㄴ은 미분계수의 정의 생각하면 o.k되는문항이고...
가정 -> 결과로 나누어서보면
간단하게 얘기해서 ㄴ을 제외한 모든 선택지의 가정이 도함수에 관한 정의가 안되있는데
결과가 f' 즉, 도함수를 들먹이는거라 다 틀린거에요
ㄴ은 f가 연속으로 주어져있어서 가정 자체가 도함수 정의라 맞는거구요
연속이아니라면 ㄴ도 틀린 보기입니다
반례 안들고는 못푸나요???
ㄱ은 평균값 정리에서 미분가능성이 먼저 가정되어야만 사용할 수 있다는걸 알려주는 것이구요
ㄴ은 연속일 때 도함수값의 정의를 묻고 있는거구요
ㄷ은 미분가능하지도 확정되지않았는데 f' 들먹이면 무조건 틀리다는걸 알려주는 거에요
ㄷ에서 윗분들이 자꾸 반례찾으시려고 하는데 반례를 찾으시려는 생각을 한다기보다 그냥 미분이 안되면 뒤에 있는 f'(0) 값 자체가 말이 안됩니다
물론 반례를 안 찾고도 참거짓이 보인다면 좋지만, 정말로 어려운 문제는 다시 그 허점을 노릴 수도 있습니다. 예를 들어서 ㄷ이 만약
|f(h) - f(0)| ≤ 2h²
와 같이 바뀌어나왔다면, f(x)는 x = 0 에서 미분가능하고 f'(0) = 0 입니다. (간단한 샌드위치 정리의 응용으로써 따라나옵니다. 그리고 제가 기억하기론 실제 이런 조건을 내걸었던 기출문제도 있었던 걸로 기억합니다.)
그러니 가장 좋은건 실제로 상황을 봐야된다는 것이지요.
간혹 반례 드는걸 뭔가 "좋은 풀이가 아니다" 라고 생각하시려는 경향이 있는데, 사실 반례가 왜 나오는지를 안다는 것은 주어진 명제가 어떤 결함을 갖고 있는지를 이해한다는 것과 같은 말로, 높은 수준의 이해를 필요로 합니다. 보통 그런 수준을 기대하기 힘들기 때문에 반례를 최대한 피하고 단계적으로 감을 잡도록 유도하는 것이지, 결코 반례가 나쁜 풀이가 아닙니다. 오히려 논리적으로는 반례를 드는 것이 정확한 증명이 됩니다. ('모든 ~ 에 대하여 ~ 이다' 라는 명제의 부정은 '어떤 ~가 있어 ~가 아니다' 라는 것, 즉 반례가 있다는 것입니다.)
우와.. 그건 굉장히 허를 찌르는 문제인거같네요. 역시 반례를 찾는게 중요하겠군요.
정의되지도 않는데 범위를 들먹이는거 자체가 이미 말이 안되는거죠 반례 찾으실 필요 없어요
당연히 명제가 거짓일 것 같다는 논리적 추론은 선행될 것입니다. 그러나 그것이 명확하지 않거나 보다 확실한 실증적 근거가 요구될 경우, 제한된 조건을 충족하는 범위 안에서 반례를 찾는 것은 도움이 되고 가치 있는 시도라고 생각합니다. 물론 시간이 매우 촉박하다면 넘어가야 겠지만, 특히 수능같은 큰 시험에서 정확한 반례를 들어놓으면 큰 도움이 될 것입니다.