위대한유산 [349445] · 쪽지

2011-07-31 16:45:44
조회수 360

미분 ebs쪽 문제좀 봐주세요

게시글 주소: https://a.orbi.kr/0001531304

1. f(x)가 x=a에서 미분가능하려면 x=a에서 연속이고 f`(x)가 x=a에서 유한확정값을 가져야하잖아요??
근데 f`(x)의 좌우극한값이 같고 어떤값을 가진다.라는 설명을 통해서 f(X)가 x=a에서 미분가능하다 라는것에대한 반례는 존재하지 않나요?  x^2sin1/x꼴의 반례(도함수정의식으로만 풀리는것) 봣을때 오바일수도 있겠지만 f(x)의 범위를 나누어서 함수를 만들어보면  f`(x)가 좌우극한값을 k(임의) 로 가지지만 f`(x)가 존재하지 않는 뭐 그런꼴은 없나요??

2. t^(-3) 인테그랄(0부터 t까지) (2{k^2)f(k)}=e^t 요고를 미분해서 푸는데 실수로 t^(-3)을 안넘기고 그냥 이대로 t에관해 미분해서 풀었는데 답이 자꾸다르게 나오네요;; 풀이>> 곱미분사용 2f(t)/tㅡ t(e^t)/2=e^t  >> 중간에 생기는 인테그랄값은 첫식에서 인테그랄에대해 정리해서 넘겨서 풀었어요~

제가써도 너무 이해하기 힘드네요;; 근데 도저히 표현을 못하겟다는.;; 좀도와주세요

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • sos440 · 104180 · 11/07/31 18:17 · MS 2005

    다음과 같은 사실을 증명할 수 있습니다.

    [명제] x = a 의 근방에서 정의된 함수 f(x)가

    (1) 연속이고
    (2) x ≠ a 에서 미분가능함을 알고 있고
    (3) lim_{x→a} f'(x) 가 L로 수렴하면

    f(x)는 x = a 에서 미분 가능하고 f'(a) = L 이다.

    증명은 정말 간단합니다. h ≠ 0 이라고 합시다. 그러면 함수 f(x)는 a와 a+h 를 양 끝으로 하는 폐구간에서 연속이고 a와 a+h를 양 끝으로 하는 개구간에서 미분 가능하므로, 평균값 정리로부터

    (f(a+h) - f(a))/h = f'(c)

    를 만족하는 c가 a와 a+h 사이에 존재합니다. 그런데 h→0 으로 가면 c → a 로 수렴하므로, 조건 (3)으로부터 f'(c) → L 로 수렴함을 알 수 있습니다. 따라서 증명됩니다.



    즉, 도함수가 비록 연속성이 보장되지는 않지만 그냥 어디서 근본도 모르는 굴러다니는 함수보다는 훨씬 좋은 성질을 가진다는 것을 알 수 있습니다. 사실 증명이 약간 번거롭기는 하지만, 다음 사실도 증명할 수 있습니다.

    [정리] f(x)가 x = a 의 근방에서 미분가능하다고 하자. 이때 좌극한 L = lim_{x→a-0} f'(x) 과 우극한 R = lim_{x→a+0} f'(x) 이 모두 수렴하면, L = R = f'(a) 가 성립한다.

    무슨 말이냐 하면, 쉽게 말해서 도함수의 불연속점은 계단 형태가 될 수 없다는 것입니다. 사실 위 정리는 좀 더 일반적인 다음 정리로부터 따라나옵니다.

    [다르부 정리 (Darboux's Theorem)] 폐구간에서 미분가능한 함수 f(x)의 도함수 f'(x)는 중간값 성질을 만족한다. 즉, f'(a)와 f'(b) 사이의 임의의 실수 k에 대하여 f'(c) = k 를 만족하는 c가 (a, b) 내에 존재한다.

    꽤나 놀라운 정리지요. 이 정리가 말해주는 것은, 도함수가 아무리 개떡같은 모양을 해도 중간값 성질은 갖는다는 것입니다. 따라서 도함수가 불연속인 지점 근처에서 도함수의 그래프는 진동하는 형태를 띠게 됩니다.

  • sos440 · 104180 · 11/07/31 18:22 · MS 2005

    t^{-3} ∫_{from 0 to t} 2(k^2)f(k) dk = e^t

    의 양 변을 t에 대해 미분해봅시다. 그러면

    2f(t)/t - 3t^{-4} ∫_{from 0 to t} 2(k^2)f(k) dk = e^t

    이고, 원식을 대입하여 적분을 없애주면

    2f(t)/t - 3(e^t)/t = e^t

    가 됩니다. 따라서 f(t)에 대해 정리하면

    f(t) = (1/2)(t + 3)e^t

    입니다.