미적분학 수렴성 질문이요
게시글 주소: https://a.orbi.kr/0001544575
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
니야호 0
귀여워
-
ㅔ 0
-
물화, 화생, 물생 하다가 도저히 각이 안보이면 과탐 하나를 지구로 바꿨음. 지금...
-
얼버기 0
-
퇴근하고싶다 4
1시간만 버티면 퇴근이야
-
수능 끝나니깐 2
수능 수학이 재밌네..
-
지듣노 0
종종 릴스로 나오더라 잔잔한게 은근 듣기좋네
-
요즘 파폭 모바일도 그렇고 컴터도 그렇고 오류 좀 많지 않아…? 어디가 문제인거지…?
-
요즘은 살짝 재밌는거 같기도 해 나 진짜 기하라이팅 당한듯
-
얼버기임 아니면 아직 안잔거임?
-
중학생? 고등학생? 언젠지도 모르겠네 내년 겨울엔 한번 타러가볼까
-
새벽 기상 3
아침 스키타기 위해 일찍 기상!
-
얼버깅 2
라랄랄라
-
슬슬 사람 많네 2
이제 나도 슬슬 본가 내려가야지
-
선지의 조어방식이랑 해석하기 까다로운 상황 이거 두가지에 대해 얘기하더라 7번,...
-
아 위경련 12
살려주세요죽을것같네
-
(소신발언)피코 은퇴해야 되는 건 맞는데 | 오르비
-
특히 문학은 더 만점을 위해서라면 지푸라기라도 손에 잡아야지 물론 이러고도 결국...
-
ㅁㅊ..
-
선생님들, 서울대 정시 내신반영 관련하여 질문이 있습니다. 2
내신을 반영할 때 국수영탐구한국사 등의 주요 과목만 반영하는지, 한문, 정보 등의...
-
헤헤 5
은테로 바뀌었나요~!
-
조금만 더 열심히 했으면 좋았을텐데 살면서 느는게 후회밖에 없네… 그래도 올수만큼은...
-
부조리 0
이 인간은 무엇인지 알 수 없는 희망을 향해 계속 서두르고 있다. 하지만, 부조리한...
-
기출분석잘하면 연계공부안했는데 연계지문 나와도 비연계라 치고 보면 풀려서 필요성을 못느끼겠더라
-
제자야 일어나라 2
넵.
-
노래를 들을때 0
가수의 목소리를 제일 신경쓰는거 같아 난 나도 목소리가 좋으면 좋을텐데 부럽네 정말
-
솔직히 재밌고 쉬운데 진짜 꿀단지인데 사문 생윤 선택할때마다 마음이 아파
-
사실 제제는 상관없으니 뭐든 만표 150 찍혔으면 좋겠어요 22때처럼 인문이랑...
-
조용하네 2
거리도, 오르비도 전부 이제 내차지인가
-
만원 할인받겠다고 2시간이상 줄서는사랑 이해안됨
-
우울하다 우울해 0
수능끝나고 하는게 없으니 더 그런거 같기도… 뭐라도 하고 싶은데 뭘 해야할지 모르겠어
-
내가 국어를개못해서 그런지 노래가사가 이해가안됨.. 우린 따로~ 필요할 때가 있어...
-
쓰레드가 뭐임 1
쓰레드가 부정적 늬앙스인것같은데 왜지
-
술 한잔 했어요 0
그대가 보고 싶어서
-
피코가 잘못한건맞지만 12
그렇게까지 큰 잘못을 했을까싶다,,, 나는 굳이 헐뜯고 싶은 생각은 안드네
-
연세의 수치 1
롤로노아 피코
-
사서 유빈이에 올림 ㅅㄱ
-
돈을 또 얼마나 땡긴 거임
-
4대 크루 통합으론 모자랐던거니....?
-
기차지나간당 11
부지런행
-
어디 가실거 같나요? 그냥 궁금해서 투표 올려봅니다
-
설대식으로 397점이어도 서울대 인문계열 떨어짐??
-
나는 내가 4
빛나는 별인 줄 알앗어요
-
친구 이제 대학교 3학년인데 갑자기 배우 회사 들어간다던데 학과는 딱히 상관...
-
http://www.newsagora.co.kr/news/articleView.htm...
-
계정은 남겨둘까
-
엄마몰래 라면끓여먹기 아빠가 찍어준거라고 해명하는게 겁나웃김ㅋㅋㅋㅋ
고등학교 과정에서도 그렇지만, (-1)^n 꼴은 차라리 -1, 1로 분류하는편이 좋습니다. 그렇게 분류하면 교대급수꼴이 나오겠죠.
콘실크 님 말씀처럼, 부분합의 실수부와 허수부를 살펴보면 양쪽 모두 교대급수 판정법을 적용할 수 있는 구조로 되어 있습니다.
아니면 디리클레 판정법같은 해석학적인 판정법을 때려박아도 나오긴 합니다. 디리클레 판정법은 교대급수 판정법의 일반화이지요. 자세한 건 http://en.wikipedia.org/wiki/Dirichlet%27s_test 를 참조하세요.
궁금해하실지는 모르겠지만, 참고로 저 무한급수의 값은
-(1/2)ln2 + iπ/4
입니다. 좀 더 일반적으로, 복소수 z가 |z| ≤ 1 이고 z ≠ 1 이면
-log(1-z) = z + z^2/2 + z^3/3 + z^4/4 + …
가 성립합니다. 위 식에 z = i 를 대입해보면 위의 결과가 나오는 것을 확인할 수 있습니다. (1 - i = √2 e^{-iπ/4} 니까요)
답변감사합니다. -ln(1-z)의 테일러급수 였군요 ㅋㅋ
그런데 링크된 곳에 3번째 조건 서메이션bn 의 절대값이 M 보다 작다를 경계가 존재한다 정도로 해석하면 되나요?
그런데 제가 헷깔렸던건 교대급수로 해보긴 해봤는데 그걸로 하려면 짝수항, 홀수항을 분리해서 계산 해야되더라구요. 그런데 절대수렴해야지만 그렇게 분리할수 있다고 해서 혼동이 됐습니다.
근데 어짜피 분리해서 각각이 수렴하니 원급수도 수렴한다고 볼 수 있겠네요... ( 물론 분리했을때 어느 한쪽이 발산하면 판정할수 없겠지만.)
그렇지요.
그리고 사실 교대급수도, 인접한 항끼리만 순서를 바꾸면 수렴성이나 수렴값은 바뀌지 않습니다. 점점 더 멀리 있는 항들끼리 순서를 바꿔나갈 때 문제가 일어나지요.
무슨 소리냐 하면, a(n)의 순서를 바꾸는 것을 우리는 자연수 N에서 자연수 N으로 가는 어떤 일대일 대응 σ : N → N 을 생각하여 a(σ(n)) 을 고려하는 것으로 이해할 수 있는데, 이때 n 과 σ(n) 의 차이가 일정한 범위 내에서 유지된다면 (즉, 어떤 양수 m이 있어서 |n - σ(n)| ≤ m 이 항상 성립한다면) ∑ a(n) = ∑ a(σ(n)) 이 됩니다. (증명도 의외로 간단합니다.)