6평 수 가 18,27,28번 살짝 다른 관점
게시글 주소: https://a.orbi.kr/00023042522
6평 치고나서 학교친구들의 보편적인 풀이법과 다른 거 같은 것들 소개하려 합니다.
사실 여러분들이 보기에 "엥 당연히 생각나는 거 아냐?" 하실 수도 있습니다.
먼저 18번
부채꼴 모양이 직선위로 움직인다고 생각하면 쉽겠죠...?
27번
이건 아마 많은 분들이 생각하셨을듯 합니다.
28번
제일 야매같은 풀이입니다. 0극한 상황을 직관적(?)으로 생각해서 삼각함수가 아니라 간단한 다항함수로 쉽게 나타나는 것인데요. 생각보다 많은 평가원 문제가 (70~90프로?) 이런 방식으로 해결 가능합니다만, 가끔 그냥 삼각함수로 나타내는 게 쉬운 모양이 생기기에 정석풀이법을 익혀야 합니다.
부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친구들이 국숭세단, 특히 세종대를 많이감..물론 의대도 많긴 하지만 1학년때 반에서...
-
입을 일이 잘 없뇨..
-
ㄷㄷ
-
연대 논술 2배 이벤트 서성한 중 이과 정시에 영향 많이 미치나요? 성대논술에는 얼마나 미치려나요
-
뭐부터 읽지 11
노인과 바다는 반납해서 없음
-
사정상 1년동안은 학교 주변에 원룸 잡고 자취하다가 이후에는 본가 (서울)로 다시...
-
하 ㅆ2발 5
경시대회 문제 거의 다 풀었는데 마지막에 시간부족으로 대입하면 바로 답 구해지는대...
-
연논 재시험?? 73
올해 연논 시험 전 만들었던 연논 대비 모의고사(5회 분량) 필요하신 분 있으시면...
-
산책가자 4
이거 너한테만 보이는 거야
-
확통 84 1
백분위 몇 보시나요?
-
그냥 그렇다구요
-
현실은 차갑네
-
한 번도 수학이 2등급 밑으로 떨어진 적 없는데 요번 수능에서 처음으로 3 받이보게...
-
국영수 최대로 끌어올릴자신 없으면 과탐하고 표점이득 보는게 낫나요? 예비고3...
-
걍 눈 닫고 귀 닫고 할거 하고 살면 딱히 열받는 일도 없어지는 듯
-
보통 애인 있는거죠? 평소에 손에 장신구 안 끼던 사람인데..
-
짜증났는데ㅔ 오늘은 제가 부르겠습니다 근데 그분은 새벽 1시에 부르셨어요…
-
노트북 추천받아요 10
인치작고 가볍고 가성비 굿인걸루
-
츠나기아와세테 에가이테유쿠 아나타가 쿠레타 데아이토 와카레모
-
ㅈㄱㄴ..
-
연대 0
1차 붙은사람 빼고 260명인거임 아님1,2차 합집합이 520명인거임?
-
보통 실력이 2,3섞여있어야함?
-
ㅈㄱㄴ
-
올영에서 3마넌 질렀다
-
차출..이라보단 "선생님 저희 로스쿨 입시도 하게 됬는데 좀 와주십쇼"겠죠
-
복잡하거나 되게 어려운 문장 나오면 종종 해석이 이상하게 엇나가는 느낌이...
-
그동안 공정성훼손!!!!! 무효!!!!! 외치던 그들 재시험 치면 기존 합격자들이...
-
작년에 다닌 독재만 5군데입니다.. 정확하게말하면 공부환경에 빨리 질리는거같아요...
-
흠 1
경제를 하지 말았어야 했다 수학 29번 실수+경제 망 2연타를 맞으니까 얼얼하네
-
???:리트도 반응해라!
-
국어 수학이 낮고 탐구가 높아 재수를 했더니 반대로 탐구가 말썽입니다...ㅎㅎ 메가...
-
하 내 자유시간...앞으로 하루에 4시간은 공부해야할듯
-
우왕 6
-
2과목 꿀이다 이러는애들 대부분 착각일 가능성이높음? 1과목 비교 이딴거없이 그냥 2과목 자체로만
-
스카독재는 정말 8
자제력이 좋으신 분만 하셔야... 올해 초에 잠깐 하다가 6모 말아먹고 잇올...
-
눈 ㅈㄴ 아픈데 3
수면마취로 첫수술때는 안아팠는데 오늘은 왤케 아프지
-
70살에 혈액투석하는 환자는 그냥 진료 안보는게 맞습니다만 굳이 치료하시려면 과거력...
-
친구가 없노
-
과외받고 올랐어요 혼자 조정식 이명학 션티 강의 모두 수강해보고 실모 돌리다가 답이...
-
중딩때 무식하게 고음만 질러대서 성대결절 3번정도는 이미 왔다간거같음 이러다 노래 못부를거같아
-
비가 내리고 1
음악이 흐르면~
-
다들 마킹 안 불안함? 12
분명 오엠알 보고 가채 썼는데 나도 모르는 억까가 발생할까봐 넘 무서움..
-
선택권은 없었지만 재밌네요
-
가산점 변표 고려하면 어디까지 될까요
-
그 시험지 몇분 미리 유출 그거 때문임?
28번 같은 방법으로 작년 수능 18번 풀면 놀라운 결과가 나오죠...
5초컷...
저 궁금한게 있는데요 , m>n 확률 이랑 m<n 확률이 왜 같은건가요?
m이 먼저뽑는건데 확률 서로 달라지지 않나요??
총 경우의 수로 생각하면 m과n의 나올 수 있는 경우의 수가 대칭적으로 분포함을 알 수 있고,
뽑은 경우를 제3자가 결과만 봤을 땐 각 수들을 랜덤으로 배열하는 것과 같기 때문에 둘 확률은 같다고 추론할 수 있습니다.
아 그리구 28번 풀이도 이해가 안가요
s1 s2 넓이 어떻게 구하신거에요??
세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다! 사용하는 역량에 따라 아주 일부분의 문제만 적용시킬수 있거나 거의 모든 문제를 적용시켜 쉽게 풀 수 있고, 극한의 상황을 해석하는 능력을 기르면 정석풀이에서 막혀도 부분적으로 활용할 수 있기에 전 고2내내 이리 풀다가 고3 들어와서 정석풀이법을 익히고 있습니다. 사실 게을러서 편법만 쓴 거지만...
님이 말씀하신 " 세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다" 이것은 이해가 가는데요
s1 s2 넓이를 구하기 위해서 쓰신 식이 이해가안갑니다 .. 그러니까 s1 s2 넓이를 어떻게 구하나요? 부채꼴도 아니고 아무것도 아닌 도형인데 어떻게 넓이룰 구하신건지 모르겠습니다
S1은 사다리꼴 S2는 직사각형으로 근사시킬 수 있습니다 전자의 경우 위 이미지를 보시면 아실 수 있을테고 후자는 QB와 RB의 곱으로 넓이을 나타낼수 있는데 QB를 나타낼 순 있으나 구조상 복잡하니 극한시 0으로 간다는 점을 이용하면 이 두 변과의 곱은 세타가 영으로 갈때 0으로 수렴하는 세타 이차식이 나옴을 알 수 있습니다. 여기에 세타를 나누어도 0으로 가기에 s1의 값만 구하면 되는 겁니다.
친절한 답변 감사합니당~~