미분 한문제좀 도와주세요
게시글 주소: https://a.orbi.kr/0002855476
제일 위에 문제 ㄴ이 문제인데요..
미분가능성조사할때 연속이고 도함수를 구한다음 그 도함수의 극한값이 존재하면 미분가능한거 아닌가요? 근데 ㄴ은 왜그러케 하면 안될까요?
도함수로 구한다음 하면 0에서 미분불가능이고 미분정의를 쓰면 존재하는데 왜이렇게 되는거죠?
그 밑엣문제는 도함수로 풀면 되잔아요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
23수능 미적 2
이때 풀면서 걍 ㅈㄴ 쫄렸음 14번 얼탱이 없는애가 갑자기 튀어나왔는데 ㄷ이 진짜...
-
나이차vs외모 1
10살연상 존예vs 나이차얼마나지 않는 평범녀
-
응애 컴공 갈꼬야
-
지금 강기분 토오전반 대기번호 520번대에서 3주만에 251번으로 줄었는데 개강전에...
-
세개 다 현장 응시 23>>24=25 23수능을 넘는 수학시험은 앞으로 안나올거같음...
-
더 친절한가요 아무래도
-
생각해보셈.
-
25수능 수학 틀린 번호는 15 20 21 22 (미적) 27 28 29 30...
-
언미물지 93 87 2 85 84 언미물지 89 95 2 97 66 화미정사 93...
-
보면 사람들 물타기도 심하고 정답을 정해놓고 사고하는 것 같음
-
어문에서 경영으로 복전하는 것만큼 경쟁률이 많이 치열해요???
-
올해 수능 44166입니다 화작 미적 생명 지구이고요 중학교 때 전교 1등으로...
-
GOAT
-
이시절 수학 진짜 좆같았는데 이때(23) 비해서 요새 솔직히 많이 쉬워졌다고 생각함
-
벌륨매직마렵 2
ㅗㅇ유ㅠㅇ우우웅
-
ㅈㄱㄴ
-
질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
-
화1 3 1
화1 42점 3될까요??
-
국어 85 수학 88 국어는 수능 기조 바뀐 후로 극복이 안 되네. 수능 기조...
-
넌 수능 봐라
-
뭐하지…
-
성적...? 헤으응
-
아는 지인이 오늘 서울대 수학과 면접 봤는데 면접 방식이 수학문제 풀기라는 거...
-
얘드라 하이하잉 4
-
재수 한국교원대 삼수 약대임 ㅋㅋ 지금봐도 ㅈㄴ 올리긴했노
-
차라리 생1지1을 하는게 낳아요 문과분들도 과탐런하세요~
-
목표는 중경외시였지만 이번수능은 경북대가 최대인거같네요. 대학 가더라도 한번 더...
-
ㅊㅊ
-
고데기했다 11
흐흐
-
지방메디컬은 사탐 허용 학교가 희귀함. 몇개 있다는데 일일히 찾긴 너무 많아서...
-
걍 투과목 표점 1
떡상하게 해주세요
-
그.. 대학을 안 물어보시고 전공만 물어보셔서 대답해드렸더니 오해를 산 것 같네..
-
파이널집 들으면서 늘 그 생각함
-
ㅠㅠ 우리엄마 6평9평보고 기대 많이 하시던데 하..
-
재수하는데 빨리 사서 풀고싶음
-
진짜 개망할뻔 했네 스토브리그 보는거에 몇시간이 지나가는거야 ㅋㅋㅋ
-
일단 저는 수능이 미응시처리 되었습니다 가천대 논술은 가보고 싶었는데 아쉽네요.....
-
3학년임
-
이렇게 추운 날에는 13
뜨끈한
-
반대로 전공과 무관한 일로도 먹고 살기가 가능한게 요즘인거 같음
-
안녕하세요 전역6개월남은 육군 군수생 입니다 22살 이고 내신 6등급 이였고...
-
잘 안팔렸나 당황스럽노.......
-
화학이 37 점이 나와버렷는데 3등급 가능할까요?? 논술 최저가 걸려 있어서 일단...
-
멍청한 나도 대충 괜찮게봄뇨
-
연논 1
어케될까요
-
니 인생이니 알아서 해라 대신 대학 졸업하는 순간 지원은 없다.. 어머니 감사합니다.. ㅠㅠ..
-
학교 면접 때문에 공강이었는데 강의실 온 사람은 뭐지 8
그런 사람이 나네...
-
물1지1 고려중 2
1. 물리가 좋아요 2. 과탐할거에요 3. 시대인재 재종은 너무 비싸서...
-
시험지 받고 파본검사할때 눈풀함
-
독학 재수 인강 0
23224(언미생지)입니다. 최대한 인강 빼고 해보고 싶은데 그럼에도 꼭 들어아햐는...
사진을 뒤집어도 뒤집어져요ㅋㅋ 지송요
간단해요. 미분가능하다는거를 잘못 접근하셔서 그래요. x=a 에서 미분 가능하냐고 물었을때, f'(a)가 존재하냐 안하냐 이것만 따지면되요.
미분가능하다는 것의 정의가 그 점에서 f`(x)값이 정의되냐 안되냐거든요.
그래서 f'(a)를 구하는 가장 원초적인 방법으로 접근해야합니다. f'(x)를 먼저 구하고 x=a를 대입해보는것은, 이미 x=a인곳에서 f'(x)값이 존재해버린다고 치는거여서 그래요.
가장 기본적인 lim(h->0)~~ 나 lim(x->a)~~ 의 f'(a)를 구하는 가장 원초적인 방법으로 접근해야해요.
제가... 공부를 안한지 되서 맞는지 모르겠는데 이게 아마 맞을거에요 ㅋㅋㅋ ㅜㅜ 근데 쓰고보니 횡설수설했네요..지송.. 제말 이해가 안가신다면 다시한번 써볼게요..
죄송한데 잘 모르겟에요ㅜㅜ 근데 f프라임a가 존재하는데 존재한다고 쳐서 풀수도 잇는거 아닌가요?
저 아래 문제는 윗분이 말씀해 주신게 맞아요. 다항함수라서 그래요. 다항함수라고 하면, 모든 점에서 연속이고 미분가능하다는 것이 보장되요.
근데 첫번째 문제같은경우 다항함수가 아니에요. 그래서 특정점에서 연속이거나 미분가능한지는 직접 확인해야해요.
일단 존재한다고 가정하는것이 잘못된 이유는, 아까 말했듯이, x=0같이 특수한 점(sin(1/x)는 x=0이면 값이 존재하지않죠)에서 도함수값이 존재하는지 안하는지 모르기 때문입니다. 그래서 값의 존재유무를 따지기위해 lim(h->0)~~ 나 lim(x->a)~~의 방법을 사용합니다.
저도 잘 설명을 못하겟네요..양민이라서.. ㅜㅜ 다른분이 명쾌하게 해주시면 참 좋겟는데..
오오 된듯 제가 글쓰다가 다른분 글을 못봣네요 ㅋㅋ
x가 0으로 갈때 미분값이 존재하네요~lim x가 0으로 갈때 함수 f(x)를 구해보시면 되요
위에분이 말씀하셨듯 바로 미분을 한다는 것은 그 자체로 미분값이 존재한다는 것을 담고있거든요.따라서 정의에 의해서 그 함수가 그 값에서 미분이 가능한지 따져줘야 되요~
참고로 밑에 문제는 제시 조건에 이미 다항함수라는게 붙어서 미분 가능하다고 보고 푸는거에요~
답변들이 다 산으로가는거같아서...
미분자체를잘못하셨으니까 답이틀리지요
전 싸인함수미분은못하지만 코싸인앞에 엑스제곱 붙어야된다고생각합니다
산으로 갑니다ㅋㅋ
미분하면 코사인 앞에 엑스제곱 이 붙나요?합성함수 미분법에 의해 약분될텐데요??그리고 싸인함수 미분 하고 코사인함수 미분은 같이 배우지 않나요?;;
다들감사합니다ㅎㅎ 마지막으로 그러면 도함수가연속이면 맞는거맞죠?
근데요 결국 답이 모에요?? 윗글 읽기기찮음 ㅠㅠ
순서대로좀 알려주세요 ㅠㅠ