미분 한문제좀 도와주세요
게시글 주소: https://a.orbi.kr/0002855476
제일 위에 문제 ㄴ이 문제인데요..
미분가능성조사할때 연속이고 도함수를 구한다음 그 도함수의 극한값이 존재하면 미분가능한거 아닌가요? 근데 ㄴ은 왜그러케 하면 안될까요?
도함수로 구한다음 하면 0에서 미분불가능이고 미분정의를 쓰면 존재하는데 왜이렇게 되는거죠?
그 밑엣문제는 도함수로 풀면 되잔아요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
거꾸로 보면 불합 가능성은 각각 46% 55% 92%입니다 너무 도박이 아니냐 라고...
-
무물보 17
안해주면슬퍼요
-
컨버전스 홀
-
이번수능 미적했는데 도저히 못하겠어서 확통이나 기하하려는데 3
논술땜에 전체적으로 둘다해봤는데 확실히 기하가 재밌긴함..미적이랑 확통은 진짜...
-
참 어렵고 어려운 일 대화가 잘통하는데는 여러 조건들이 충족해야하니...
-
변표 4
아직 안나온건가요?
-
선택과목 4
생2지2로 설의가능?
-
하..
-
재수할 때 외롭나요 15
독재 예정인데, 보통 재수 할 때 외로움이나 고독감? 심한가요? 물론 사람마다 다르겠지만...
-
80프로부터 쭉쭉 떨어지는 중인데 실채 뜨면 못 갈 수도 있나요?
-
의대 약대 로스쿨만 주세요.
-
호우 0
좐잔 지연없이 안전한 사이트입니다 각종 이벤트도 진행중이니 가입하시고 즐겨보세요...
-
심찬웁니다. 8
심찬 듣고 웁니다.
-
무물보
-
인서울 의대 가고시퍼요.. 잘봐서 올림!!
-
작년 406이었는데 올해 404네…ㅎ
-
인하대 하나만 남았는데 일요일부터 학원 개강이라서 일요일-금요일 중 선택해서 들으러...
-
편입은 외국인? 0
저 정말궁금해서그러는데요. 제 친구가 편입영어는 외국인이 합격률이 압도적으로높고...
-
진지하게 조언좀
-
내가 잘못 알고 있었나?
-
이명학이랑 션티중에 누구 들어야되는지 4번째 물어봅니다 9
올수 2등급 받았고 내년엔 1등급받고 싶은데 이명학 션티 중 누가 맞을까요 커리큘럼...
-
군대 제외하고 0
전문의까지 11년걸리는데 의대가 빡세긴하네요 20대 초중반까지가 마지노선이고 30넘으면 어후
-
이 별이 많고 어려운 곡을 첫트에 1개틀리고 깬것을 ㅇㅈ함
-
호우 0
환전지연없이 안전한 사이트입니다 각종 이벤트도 진행중이니 가입하시고 즐겨보세요
-
고2때부터 컴공 지망했고 성적이 안돼서 유사컴공(정보통신) 입학했다가 군수 끝에...
-
막 3개월~6개월 동안 계속은 못하겠고 일시적으로 단기만 예를들면)...
-
그정도 아닌데;
-
1121 3
11시21분
-
왜 이딴새끼만 쳐잡림 진짜 손 다잘라버리규싶네
-
내가 뭐했는데시바
-
ㅈㄴ 갓생산듯
-
텔그 60퍼대 6
이것도 다 떨어지나
-
ㅈㄱㄴ
-
ㅇㅈㅎ 내가 2023 수능 볼때도 교육부 장관인데 왜 지금도 교육부 장관이냐?
-
뭐야 나도 무물보 할래 50
나도 해줘
-
나좀 저격해주셈 유명해지게
-
욕달림 ㅋㅋㅋㅋㅋ 그거 보는 게 진짜 웃김
-
수능 교육과정 3
몇년생들부터 바뀌는건가요? 교육과정 바뀐 입시를 처음 치르는 학생들이 태어난 년도가 궁금해요!
-
컴활 어려움? 2
1급 따려하는데
-
등비급수에 한해 맞는 말 아닌가요
-
국민대vs세종대 3
ㄹ
-
"가르칠 자격" 이라는게 따로 있는건가 싶기도 하당 유독 강사한테 더욱 엄격한듯
-
작년 대성학원 반수 시즌 장학 요건 보니까 수학 1이 절실히 필요하다.
-
ㅎㅇㅈ쌤… 하아… 대성 수학 강사 추천해주세요 수학 잘 못해요 3-4정도.....
-
서울대 쓰기도 애매하고 지방 메디컬도 영어 2라 애매하다고 하네요. 반영비 맞는 대학 없을까요?
-
31211인증하라는 게시물보고 깜짝 놀랐습니다…. 불과 5분전에 쓰신글에선...
-
인강 커리 질문 0
예비고3인데 지금 물리,지구 인강 개념을 듣고있습니다 물리는 역학적에너지 보존...
-
무물보 ㄱㄱ 17
아무잘문이나 받음
-
예비 재수생인데요 ,,, 올해는 생1 지1 을 했구요 재수하면서 생1을 다른...
-
일단 우리학교는 학종 지원보다 3배 많은 인원이 논술을 씀 저도 한두장은 수리 논술...
사진을 뒤집어도 뒤집어져요ㅋㅋ 지송요
간단해요. 미분가능하다는거를 잘못 접근하셔서 그래요. x=a 에서 미분 가능하냐고 물었을때, f'(a)가 존재하냐 안하냐 이것만 따지면되요.
미분가능하다는 것의 정의가 그 점에서 f`(x)값이 정의되냐 안되냐거든요.
그래서 f'(a)를 구하는 가장 원초적인 방법으로 접근해야합니다. f'(x)를 먼저 구하고 x=a를 대입해보는것은, 이미 x=a인곳에서 f'(x)값이 존재해버린다고 치는거여서 그래요.
가장 기본적인 lim(h->0)~~ 나 lim(x->a)~~ 의 f'(a)를 구하는 가장 원초적인 방법으로 접근해야해요.
제가... 공부를 안한지 되서 맞는지 모르겠는데 이게 아마 맞을거에요 ㅋㅋㅋ ㅜㅜ 근데 쓰고보니 횡설수설했네요..지송.. 제말 이해가 안가신다면 다시한번 써볼게요..
죄송한데 잘 모르겟에요ㅜㅜ 근데 f프라임a가 존재하는데 존재한다고 쳐서 풀수도 잇는거 아닌가요?
저 아래 문제는 윗분이 말씀해 주신게 맞아요. 다항함수라서 그래요. 다항함수라고 하면, 모든 점에서 연속이고 미분가능하다는 것이 보장되요.
근데 첫번째 문제같은경우 다항함수가 아니에요. 그래서 특정점에서 연속이거나 미분가능한지는 직접 확인해야해요.
일단 존재한다고 가정하는것이 잘못된 이유는, 아까 말했듯이, x=0같이 특수한 점(sin(1/x)는 x=0이면 값이 존재하지않죠)에서 도함수값이 존재하는지 안하는지 모르기 때문입니다. 그래서 값의 존재유무를 따지기위해 lim(h->0)~~ 나 lim(x->a)~~의 방법을 사용합니다.
저도 잘 설명을 못하겟네요..양민이라서.. ㅜㅜ 다른분이 명쾌하게 해주시면 참 좋겟는데..
오오 된듯 제가 글쓰다가 다른분 글을 못봣네요 ㅋㅋ
x가 0으로 갈때 미분값이 존재하네요~lim x가 0으로 갈때 함수 f(x)를 구해보시면 되요
위에분이 말씀하셨듯 바로 미분을 한다는 것은 그 자체로 미분값이 존재한다는 것을 담고있거든요.따라서 정의에 의해서 그 함수가 그 값에서 미분이 가능한지 따져줘야 되요~
참고로 밑에 문제는 제시 조건에 이미 다항함수라는게 붙어서 미분 가능하다고 보고 푸는거에요~
답변들이 다 산으로가는거같아서...
미분자체를잘못하셨으니까 답이틀리지요
전 싸인함수미분은못하지만 코싸인앞에 엑스제곱 붙어야된다고생각합니다
산으로 갑니다ㅋㅋ
미분하면 코사인 앞에 엑스제곱 이 붙나요?합성함수 미분법에 의해 약분될텐데요??그리고 싸인함수 미분 하고 코사인함수 미분은 같이 배우지 않나요?;;
다들감사합니다ㅎㅎ 마지막으로 그러면 도함수가연속이면 맞는거맞죠?
근데요 결국 답이 모에요?? 윗글 읽기기찮음 ㅠㅠ
순서대로좀 알려주세요 ㅠㅠ