똑같은 함수식인데 다른 개형이 나올 수 있나요? y=x^(2/6) 와 y=x^(1/3)
게시글 주소: https://a.orbi.kr/0002967448
1은 짝수차라서 우함수 y축대칭
2는 홀수차라서 기함수 원점대칭
그런데 2/6 = 1/3에서
x^(2/6)=x^(1/3)
???????????????
이 그래프가 맞는지가 일단 모르겠고
맞다면 식이 똑같은데 왜 개형이 다른건가요?
분수 지수는 맘대로 약분할수 없다든지 그런 이유가 있을 것 같은데..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4~5년? 됐지만 아직 아주아주 멀쩡한 노트북 하나 있는데 패드도 사는게 나을까요?...
-
화생 선행 1
해보고 싶은데 인강 안 보고도 할 수 있는 책 있음?
-
ㅅㅂ 1
슈비
-
저는 오늘 메인에 두번간적이 없어요,... 이젠 안전하구나 나의작은옯생을 위해
-
기상 19
할로우
-
공부 재능으로 열등감 자격지심 들면 어떻게 해결함 15
재능충 볼때마다 무기력이랑 우울 심해지고 내가 하는 짓이 의미없어보임 수능 끝나고...
-
한양대 국제학부 0
한양대 국제학부 최초합하부분들 중에 빠지실 분 있나요?? 제발제발제발제발
-
덕코내놧 6
주세요......
-
평화로운 학교생활을 위해 일단 비밀로하려고요,,,, 그래도 언젠간 뱃지신청 새로 할게요
-
청소가 제일어려우
-
수학영어랑 지구1으로 최저공부만 할 생각인데 부모님 몰래 하려다 보니까 돈이 많이...
-
흠 이건 좀 변수인데
-
안녕하세요. 서강대 전자공학과 생각하고 있는 분들을 위해 적어봤습니다....
-
생각보다 많은거 포기해야하는 거였음 그래도 하고싶은게 있으니 드간다 한번 사는 인생
-
진학사 재작년 충원률하고 네이버에서 찾은 재작년 충원률 정리 사진하고 왜 달라요?...
-
564일차까지만 버티자
-
저는 궁금한거 있으면 카톡으로 보내놔라 말은 하는데 아무도 안보내서ㅋㅋㅋㅋㅋ 늘...
-
후기 ㅆㅅㅌㅊ 지금바로 신청하세요 롸잇나우우
-
근데 오르비만한게 없네 대체제가 없어….. 졸업하고 에타로 가려햇는데 원래는..?...
-
이시각 해운대 1
-
와 ㅆㅂ 생2 13
하디바인 개어려운데 ㅋㅋㅋㅋㅋㅋㅋ 와우 ㅆㅂ 나름 이과과목 자시느있는데 진짜 어렵네 ㅋㅋㅋㅋㅋㅋ
-
이미지 선착 10명 63
써드립니다
-
내 점수까지는 빵이 나지 않는다는 거시야
-
맞팔구 3
-
진짜임
-
진로 취업 회사생활 학교생활등 다 괜찮습니당
-
이게 술이지
-
애새1끼들이 신고를 쳐멕이네 나만 죽을 수는 없지 정지기간 끝나면 과외 모집글 죄다 신고박을거다
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
문제없죠??
-
(과탐 자작문제 그림 그리는 프로그램 -...
-
줄을 서시오
-
sea pearl
-
그 사람한테 스토리 답장 옴 질문 안 받는다 (사실 주접까진 아니고 걍 스토리에 노래 올림)
-
기하의 장점 3
1. 개념량이 미적의 1/3이다. 2. 기출양이 미적의 1/3이다. 3. 1단원은...
-
공포겜할때 뒤돌아보면 괜히 더 후달리는것처럼 시계보면 더 쫄렸기 때문에 시계보지말고...
-
국어 풀때 1
국어 풀때 비문학은 구조도 그리잖아요? 제가 강민철 커리 타는데 문학에서도 관계도랑...
-
오징
-
공부도 좀 다시 해야지 학잠이라는 것을 입어도 합법인 공간이니 등판에 독수리를 휘날리며 으흐흐
-
빨리 써줄게요 소화될때까지 할게 없음
-
암산테스트 5
80찍어보고 싶다
-
터진 만두가 되
-
제이팝 추천 13
킹누-백일 처음 들었을 때의 충격을 잊지 못함..
-
https://www.sdij.com/sdn/dict/jaejong/signature...
위의 식은, 근호 안이 항상 양수라, x의 값에 상관없이 y는 항상 양수 (x=0일때만 y=0)
아래의 식은 근호 안이 음수일 수도 있으니, y는 양수일 수도 있고 음수일 수도 있고. (x=0일때만 y=0)
식을 근호형태로 쓰지 않고 x^(1/3), x^(2/6) 이런식으로 쓰면 결과가 달라지나요?
본문의 함수식은 x^(1/3), x^(2/6) 이것과 같은식이 아닙니다. 지수법칙에서 분수제곱의 형태일때 밑은 음수가 될 수 없기 때문에, 이 함수들은 정의역이 x>0 으로 제한이 되는겁니다. x=0도 들어가지 않아요.
따라서 이렇게 분수로 쓴다면 x>0이 확정되기 때문에 x^(1/3)=x^(2/6)이 성립 합니다. 이는 위의 그래프의 x>0인 부분에서도 확인 가능하구요.
위 식과 아래식은 똑같은 모양은 맞아요. 다만 위 식은 x값이 음수여도 함숫값은 항상 양수지만, 아래 식은 x값이 음수이면 함숫값은 음수지요. 즉 x<0일 때 위 식과 아래식은 y=0에 대칭인 관계인 거죠
정리하자면 위나 아래나 그래프의 모양 자체는 같지만, 단지 x<0일 때 치역의 범위가 서로 다른 거죠. 위식의 함숫값을 f(x)라고 하면 아래식의 함숫값은 -f(x)이 되는 것일 뿐인 것.
보통 우리가배운 지수 대부분은 0보다 작을때 성립을 잘안합니다 위도 그런경우입니다.
식이 똑같다는 생각 자체가 오류입니다.
물론 x ≥ 0 인 볌위에서는 두 식이 똑같이 x^(1/3) = x^(2/6) 이 되기 때문에 같아지지만, x < 0 에서는 '유리지수가 정의되지 않습니다'!
교과서를 탈탈 털어서 잘 살펴보세요. 우리는 밑이 양수가 아닌 경우 오직 정수지수에 한해서만 지수를 정의했을 뿐 유리지수나 실수지수 따위를 정의한 적이 없습니다.
그래서 당연히 지수법칙도 쓸 수 없고, 두 식이 같다고 이야기할 수 없는 것입니다.
그러면 왜 밑이 음수일 때 지수를 정의하지 않을까요? intabiloo님이 잘 이야기해주셨듯이, 지수법칙이 상당수 깨지기 때문입니다. 지금 목격하신 경우 자체가 바로 여기에 해당되지요.
사실 이점이 재미있는 부분인데, 처음 배울 때에는 거듭제곱근과 유리지수를 연결짓는 것에 곤란을 겪곤 하는데, 익숙해지만 반대로 둘을 항상 같은 것으로 생각해서 혼란이 오곤 하지요. 둘이 일치하는 범위는 (적어도 고등학교 범위에서는) 오직 밑이 0 이상인 실수일 때뿐입니다.
sos님 질문이 있습니다. 제가 배우기로 0의 분수지수는 정의를 하지 않았다고 배웠는데, x=0에서 분수지수를 쓸 수 있나요? 루트x와 x의 1/2제곱은 다른 함수라고 알고 있어서요.
정의하기 나름이지만, x > 0 이면 0^x = 0 으로 정의하는 것이 상당히 그럴듯하지요? 함수의 연속성에 비추어보았을 때 말이지요. 때문에 0의 양수지수 거듭제곱을 굳이 정의하지 않을 이유가 없습니다.
하지만 이는 어디까지나 x^p 꼴의 함수를 생각할 때 유용한 것이지, 밑이 0인 지수함수라는 개념 따위가 유용하다는 내용은 아닙니다.
감사합니다 음수일때 분수지수를 조심해야겠네요