[미적분] 자작 문제 투척
게시글 주소: https://a.orbi.kr/0003020109
오랜만에 한문제만 올려봅니다 ~
요즘 무료 공개 모의고사를 한회분 제작중인데
모의고사에 들어가지 않을 문항입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뀨뀨 8
뀨우
-
ㅜㅜ
-
고양이... 같다고 해야 되나 평소에 안 그러던 사람이 따수운 말 한 마디 해주면...
-
저도 사실 은테 5
금테 달고 싶어서 달았어요 ㅜㅜㅜ
-
죽어
-
ㅈㅅ
-
내 예상엔 2030~2035 사이에 인기가 상승하지 않을까 싶음
-
오늘 목표는 6시간
-
.
-
잘생기고 예쁜 애들 ㅈㄴ 많네.. 이게 나의 마지막 보루인데..
-
덕코는 6
도당체가 어따쓰는거임? 이걸로 편의점 결제 된다는 거 ㄹㅇ이에요?
-
어느캠퍼스냐고 물어봤을때 얼버무리는 사람임 얘네는 이미 본캠에 자아의탁해서 더이상의...
-
나는 성대가 싫어요 14
구조가 너무 어려워요
-
언제 하실 예정인가요?? 전 3떨할까봐 언제 할지 모르겠네요
-
물2로 가면되는구나!!
-
경주캠으로 단거에요.. 그랬다면 얼마나 좋았을까
-
개맛있음
-
이게 올수 화1 지1 50 47이고 지1은 4번 틀렷는데 만약 삼반수를 하게 된다면...
-
국문과를 다니게되면 온갖 고전문학을 공부하고 현대문학 교육 그런것들을 배우게되는데...
-
왜 아직까지도 있는거야
-
사탐 군침 싹도네 하아
-
종강을 바란다
-
정렬부인화 된듯
-
배경지식으로3 분컷 할수있음? 개씹황 독해력에다가 서울대 경제학과박사 졸업, 도쿄대...
-
별로 안 친한데 인스타만 맞팔인 친구가 있음 걔가 수시 발표나고 고려대 합격했다길래...
-
[덕코이벤트]삐용삐용 오르비 로고 공모전 4일!!! 12
힝ㅜㅜ 4일 남았어요!!!! 빨리 빨리 ㅠㅠㅠ 1등 300만원! 10명 10만원!...
-
증권가 찌라시에 따르면 12
한국 재계 서열 1위가 바뀔지도 모른다는데..
-
ㅈㄱㄴ
-
어제 옵치 실버 5까지 올려놨는데 브론즈로 떨구게 생겼네;; 얼탱이;;;
-
기상실퍄
-
1.정의란 무엇인가 2.코스모스 3.이기적유전자 4.부분과 전체 5.닉슨쇼크...
-
성대 어디까지 갈 수 있을까요 ㅠ 자연과학계열은 갈 수 있겠죠?
-
진성준 "한동훈, 동덕여대 사태 '정치적 땔감' 악용" 9
"韓 주장, 본말 전도…사태 원인은 학교 당국 비민주성" 박찬대 "이재명 위증교사...
-
통합통합탐구로 합치는거임
-
제일 못 본 과목명과 28
틀린 개수를 쓰고 가시죠 전 25수능 일본어 17개...6등급...
-
런이라고 할 것도 없는게 언매 확통 사문 생명 이고 이번 수능 32 31점 나옴...
-
은테를 달 수 있어.
-
킥킥킥킥킥킥킥 1
배꼽으로 똥을 한 무더기
-
국어는 고3 모고, 수능 고정 1 떠서 다지기용으로 강민철 언매랑 다른 거 하나...
-
시발코딩못해먹겟늠 12
교재 그대로 비주얼스튜디오 넣음->자꾸 scanf무시됏다뜸 교수님이 Dev C++에...
-
현재 고려대 컴과 재학중인 02입니다. 차례대로 22,23,25 수능이고 24수능은...
-
나도 한때는 1
물화를 고집하던 시절이 있었지
-
둘다 붙으면 어디? 10
둘 다 붙으면 어디갈지 고민중..
-
과는 상관 없습니다. 어디까지 가능할까요?
-
융전, 전기생체, 기계, 신소재 순위 매기면 1위는 융전인데 나머지 3개는 순위...
-
국어(언매) vs 수학(미적) 공부 난이도 누가 더 어려움? 7
뭐가 점수 나오기 더 어렵다고 생각함??
-
어벤져스 어셈블
-
뭐 최저를 맞춰야 한다던가 대깨설이라던가 메디컬(이것도 잘모르겠음)을 가고싶은것도...
-
내년 지구가 1
올해 수능보단 쉽겠죠? 1컷이 저러면 바로잡아줘 가원이형..
-
굿모닝 4
2? 이젠 머리가 돌이되서 증명도못하겟다..
아 4번이구나 ㅋㅋㅋㅋ f'(0)이 f (0)으로 보이다니 눈이 삔듯..ㅠㅠㅠ
2??
근데 오르비 언제부터 비밀글없어졋나요..
나형 모의고사도 나오나여
가형만 만들어요 저는.. ㅋㅋ 나중에 나형도 만들수도 ㅠ
2 또는 4인 것 같은데 ㄷ을 지금 못풀겠네요..
정답은 밤에 공개할께요 ^^
4번?
한완수에서 본듯하네요ㅋㅋㅋ
흠 예전 모의고사에 만들어 넣었던건데 한완수 집필하면서
넣었을수도있겠네요 ㅋㅋ
다들 어느새 고치셧네요 ㅋㅋ ㅠㅠ
덕분에 혼란스러웠어요 ㅠㅠ
4
밑변의 길이가 1인 문제 변형이군요.
ㄴ에서 [0,1]을 (0,1)로 바꿔도 성립하나요?
위로 볼록이라 4번이 맞는 듯 한데
아래로 볼록 아닌가요?
ㄷ이 평균값이 함수값 보다 위에 있다는 말 아닌가요?
b-a때문에 넓이 비교인것 같아요~~ㅎ
아 평균값이 아니었군요;
f(a)+f(b) / 2 로 봐버리다니
4?
4번 같은데요
2번...
ㄷ의 왼쪽 조건은 아래로볼록이라는 뜻이고 오른쪽 식은 2를 양변에 나눠서 우변을 1/2f'(0)으로 표현하면 삼각형의 넓이가 되니까...
아래로볼록 함수는 x값이 증가할 수록 f'(x)도 증가하고 결국 거짓이 되는것 아닌가요;;
ㄷ 왼쪽 조건이 평균값이 아니라 x값의 평균의 함수값이예요.
;;네 ㅋㅋ 수정하고 확인눌렀더니 님 답글때문에 안고쳐졌어요 흑흑 너무함
1/2{f(a)+f(b)} 로 계산했다고 썼는데...
f((a+b)/2)였음 ㅠㅠ
ㅋㅋ 저만 틀릴 순 없지요
전 수정 성공 아싸
어차피 저는 수험생이 아니니 아싸 ㅋㅋㅋ
위로볼록인듯. 이거 햇갈리신분들 은근히 많나보네요
4번아닌가여? 삼각형넓이랑 위로볼록함수같은데
삼각형이 아니라 사각형넓이
위로볼록같은데 ..
444
답은 4번입니다. 그런데 ㄷ에서 주어진 조건이 함수가 위로 볼록이라는 사실을 의미한다는 것이, 비록 그림으로는 그럴듯해보이지만 실제로 증명하는 문제는 또 따로 생각해 볼만한 문제인 것 같습니다. 이제,
[문제 조건] : 임의의 a < b 에 대하여, f((a+b)/2)(b-a) > ∫_a^b f(x) dx
⇒ [위로 볼록의 정의] : 임의의 a < b 에 대하여, (a, f(a)) 와 (b, f(b)) 를 잇는 선분은 항상 y = f(x) 의 그래프 아래에 놓인다.
임을 실제로 증명해봅시다.
>> 증명. 귀류법을 이용하기 위하여, 주어진 조건을 만족하면서 위로 볼록이 아닌 함수 함수 f가 존재한다고 가정합시다.
그러면 어떤 a < b 가 존재하여, (a, f(a)) 와 (b, f(b)) 를 잇는 선분의 일부가 y = f(x) 의 그래프의 위에 놓입니다.
이제 그 위에 놓이는 선분의 일부분을 최대한 연장하여 y = f(x)의 그래프와 맞닿게 함으로써, y = f(x) 위의 어떤 두 점 P(p, f(p)), Q = (q, f(q))이 존재하여, 선분 PQ는 y = f(x) 의 그래프보다 위에 놓이게 된다는 사실을 알 수 있습니다.
따라서 이 선분의 기울기 m = (f(q) - f(p))/(q - p) 에 대하여, 함수 g(x) = f(p) + m(x - p) 는 이 선분을 나타내는 함수가 되며, 함수 h(x) = f(x) - g(x) 는 h(p) = h(q) = 0 이고 p < x < q 일때 h(x) < 0 을 만족시키는 미분가능한 함수가 됩니다.
그러므로 최대최소 정리로부터 폐구간 [p, q]에서 h(x)의 최소값을 갖는 지점 p < c < q 를 하나 찾을 수 있습니다. 그러면 0 = h'(c) = f'(c) - m 이므로 m = f'(c) 이고, 이로부터
h(x) - h(c)
= f(x) - f(c) - m(x - c)
= f(x) - f(c) - f'(c)(x - c)
임을 얻습니다. 그런데 h(c)는 구간 [p, q]에서 h(x)의 최소값이므로, 위 값은 [p, q] 위에서 항상 0 이상이 됩니다. 그러므로 [p, q] 위에서 항상
f(x) ≥ f(c) + f'(c)(x - c)
이 성립합니다. 따라서 p ≤ c-k < c < c+k ≤ q 를 만족시키는 임의의 양수 k에 대하여
∫_{c-k}^{c+k} f(x) dx
≥ ∫_{c-k}^{c+k} (f(c) + f'(c)(x - c)) dx
≥ 2kf(c)
이고, a' = c-k, b' = c+k 에 대하여 위 식은
∫_a'^b' f(x) dx ≥ f((a'+b')/2)(b' - a')
와 같아집니다. 그런데 이는 ㄷ의 가정에 모순입니다! 따라서 주어진 함수 f(x)는 위로 볼록이어야 합니다. ////
증명의 아이디어가 잘 안 잡히신다면, 다음의 직관적으로 번역된 버전으로 읽어보시면 더 좋을 듯합니다:
>> 증명, 직관적 버전. 함수가 직선이 아니고 위로 볼록이라면, 주어진 부등식이 성립함은 넓이를 비교해보면 쉽게 알 수 있습니다. 또한, 마찬가지로 함수가 직선이 아니고 아래로 볼록이라면, 주어진 부등식의 반대방향 버전이 성립함도 당연합니다.
그런데 주어진 미분가능한 함수가 위로 볼록이 아니라면, 적어도 어떤 지점에서는 아래로 볼록이 됩니다. 그리고 그 지점 근처에서 주어진 부등식을 살펴보면, 부등호 방향이 반대가 됩니다.
따라서 우리는 모순을 얻고, 주어진 함수는 위로 볼록이어야 합니다. ////
4번인거 같다
444
4번. ㄷ은 기출문제 응용이라 넓이로 바로 풀었는데,
ㄴ은 [0.1]에서 y=2x 그래프와 f(x)가 한점에서 만나면, 그 만나는 점과 원점 사이의 평균값 정리로 인해 적어도 기울기가 2인 접선이 존재하므로 참이라고 했는데 혹시 다르게 푸신분 있으신가요?
수학굇수들이 4번이라할때 수학볍신인나는 소신껏 2번...
서울대조인성//저는 귀류법으로 풀었습니다.
구간 [0,1]에서 f'(x)<2라 가정해봅시다. 그러면 양변을 적분해서 f(x)<2x가 될 겁니다. 그런데 2x를 구간 [0,1]에서 적분한 값은 1이기 때문에 f(x)를 적분한 값이 1이 될 수 없어서 모순이 됩니다.
적분과 미분의 부등호 크기는 그대로 적용될 수 업는 걸로 알고 잇는데요. f'(x)<2 라고 해서 적분값 f(x)<2x 라는 말은 성립하지 않는 거같네요. 그리고 적분하면 적분상수가 나오는데 기울기 상으로 봤을 때 f'(x)가 2보다 작더라도 상수값에 의해 2x보다 더 위쪽에 있을 수 있습니다.
저는 부정적분을 한 것이 아니라 정적분을 했습니다. 두 연속함수 f(x), g(x)에 대해 구간 [a,b]에서 f(x)<=g(x)이면 int_a^bf(x)dx<=int_a^bg(x)dx임이 알려져 있습니다. 이때, 보기 ㄴ에서 f'(x)<2라고 가정하면 위 정리에 의해 int_0^1f'(x)dx
아 잘못 적었다..; 다시 설명할게요
다시 처음부터-위의 답변은 무시해주세요 ㅠㅠ
정적분을 하는데, 이때 f'(x)<2라 가정했을 때, 0보다 큰 실수 x에 대해, 구간 [0,x]에서 int_0^x f'(t)dt
맨 처음 답변에서 a<=b라 두면 이상 없을 것 같습니다.
ㄷㄷ 2번이에요
근데 sos440님이 써놓으신 증명에서
∫_{c-k}^{c+k} f(x) dx
≥ ∫_{c-k}^{c+k} (f(c) + f'(c)(x - c)) dx
≥ 2kf(c) 에서 마지막 부등호는 등호로 바꿔야 하는거 아닌가요? ㄷㄷ 헷갈려서요. ㄷㄷ
ㄷ 이 왼쪽 식이 위로볼록인건 알겠는데 오른쪽 식에서 뭘뜻하는 건지 모르겟네요.... 알려주세요
4번
ㄷ에 f((a-b)/2) 가 f((b-a)/2)로 가면 ,, 조금 보이는데요 으악. a-b면 어떻게 해야죠.
무조건 2번 주장 ㅠㅠ ...