(수정재업) 밀도형 자료의 내분과 평균변화율
게시글 주소: https://orbi.kr/00031140330
이전 내용이 좀 부족해서 설명추가해서 재업합니다.ㅋㅋ 박제하려고요..
안녕하세요, 논리화학입니다. 원래 계획대로면 8월 초에 2가산 보충 하기 전까지 딱히 글을 쓸 일이 없었는데 오늘 아침에 밥을 먹다가 밀도 내분 관련해서 설명 아이디어가 떠올라서 짧게 글을 써 봅니다. 나중에 설명을 이거로 바꾸려고요. 이미 직관적으로 알고 계셨을 분들도 있을거고, 당연한 내용입니다.
Chemistry Logistics 110p를 보면 이런 내용이 있습니다.
사실 여기를 쓰면서 좀 고민을 많이 했는데, 저게 되는게 너무 당연한데 이를 설명 할 방법이 그냥 '식 모양이 그렇다'라고 하는거 말고 딱히 없더라고요. 직관적으로 너무 당연하지만 뭔가 전달이 잘 안되는 느낌이었습니다.
단위X당 Y의 자료의 경우, X에 대해 Y의 양이 비례하는 상황입니다. 예를 들어 단위 질량당 원자수가 4라면 3g있으면 대충 원자가 12개있다고 할 수 있는것처럼요.
즉 어떤 물질 A에 대해 단위 X당 Y가 a라면, Y=aX꼴로 나타낼 수 있습니다.
또 어떤 물질 B에 대해서도 단위 X당 Y가 b라면 Y=bX꼴로 나타낼 수 있겠죠. 이걸 기하적으로 나타내면 다음과 같습니다.
이 상황의 경우 단위 X당 Y가 각각 1, 3이라고 할 수 있겠네요. (기울기) 이제부터 설명 편의상 가로축을 부피, 세로축을 질량이라고 해 봅시다. 또 파란선을 A, 초록선을 B라고 합시다.
이제 예를 들어, A가 1, B가 1만큼 있다면 평균변화율(즉, 평균밀도)은 당연히 2입니다.
한편, A가 3, B가 1만큼 있다면 평균변화율은 1.5(=(3+3)/4)인데요, 이건 A와 B를 1:3으로 내분한 것과 같습니다. 이제 이 이유를 설명 해 봅시다.
상황은 그대로 A(기울기 1)을 3개, B(기울기 3)을 1개 넣은 상황입니다.
이제 주황선은 평균변화율인 1.5를 반영하여 y=1.5x를 나타낸 상황입니다.
x축의 값이 4일때를 보면, A는 4, 평균은 6, B는 12입니다. 평균으로부터의 거리비가 1:3이네요. 즉 1:3내분점입니다.
이제 주황색인 y=1.5x를 파랑색이랑 초록색에 각각 빼서 그래프로 나타내 봅시다.
각각 y=x와 y=3x에서 y=1.5x를 뺐으니, y=-0.5x와 y=1.5x가 됩니다. 그러면 x축으로부터의 거리비가 1:3이 됩니다.
이제 파란선을 따라 오른쪽(x축)으로 3만큼 움직이고 초록선을 따라 오른쪽으로 1칸 움직이면 당연히 x축이랑 닿아야 하는게 눈이 보입니다. 지금 상황은 평균변화율인 1.5x를 뺀 상황이니, x축과 닿는다는건 평균변화율과 일치한다는 말 입니다.
위에 써 놓은 '오른쪽으로 3만큼 움직인다'를 물질의 관점에서 보면 '물질 A를 3만큼 넣었다'라고 할 수 있겠죠. 즉 물질 A를 3만큼 넣고 물질 B를 1만큼 넣었더니 평균변화율이랑 일치했다는 뜻 입니다.
이제 이 상황을 일반화해서 생각하면 밀도형 자료가 내분되는게 더 직관적으로 와닿습니다.
어떤 느낌으로 하시면 되는지 수학적으로 설명 해 보겠습니다.
내분하고 싶은 두 일차함수를 ax와 bx라고 생각합시다.
이제 우리가 ax와 bx에서 적당한 일차함수를 그냥 뺍니다(당연히, 기울기는 a와 b 사이입니다)
그러면 위 그림처럼 x축과의 거리비를 가지는 일차함수가 될겁니다.
그러면 그 거리비가 존재비율의 반대가 됩니다. 이유는 아까처럼, 오른쪽으로 적당히 움직여 보면 바로 알 수 있습니다.
사실 이 설명은 원래 pdf(119p)에 보너스로 있던 일차함수 내분을 거꾸로 읽은 느낌이죠. 이전엔 밀도가 내분되니깐 일차함수도 내분된다는 식의 증명이었습니다. 이번엔 일차함수가 내분되니깐 밀도도 내분된다라는 느낌으로 설명하는 느낌입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
“흡족”
-
ㅇㅈ 2
ㅁ ㅇㅈㅁ
-
막글싸고싶다 0
뿌다다닷
-
2027년 의대열풍으로 인한 사교육 과열로 인해 너도나도 실력없는 강사들이 양산되기...
-
수능 안할래
-
2일연속 6
7병 ㅎ
-
풀지도 않을 위클리 모의고사인지 뭔지 그만 강매시켜라
-
운동하기
-
독서 질문ㅠㅠ 0
두번째 사진에서 저두부분이이 이해가 안가요ㅠㅠ 만약에 120을 2 4 8 16.....
-
설 의 적 표 현 오행시 제일 맛깔나게 한사람에게 천덕.
-
으음
-
다시 조용히 수학문제 풀어제끼는 오르비언으로 복귀
-
1. 갑을병정무 등장하는 제시문 길어지면 정줄 잡고 등장인물 간 관계도...
-
정답은 3
삼점도 못 푸는 사람
-
예... 뭐 그렇다고요 근데 지피티 김젬마 쌤이랑 원정의 쌤 안티인가 원본을 못 담노
-
아침부터 수학 실모 2개풀고 사탐외우고 논술 4시간동안 현강듣다오니까 머리...
-
삼못사 먼 뜻이게 10
이미 아는 사람은 ㄴㄴ
-
나도 사람인데 말이야
-
어디한번 호감도 구경좀 해볼까
-
팩트는 옯찐따는 비호감 척도 조사도 못한단 거임,, 4
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
ㄹㅇ 어렵네,팁 좀..
-
잘어울려요
-
내가 알음;
-
오감도 시제1호 13인의 아해가 도로로 질주하오. (길은 막다른 골목이 적당하오.)...
-
ㅇㅈ 15
-
저는 민감해서.. ㅜㅇ우긍으이읏생긋
-
막 되게 높게 써줫는데후에 되게되게 높게 호감인 사람이 나타나면 어떡함난 막 쓰다가 꼬여버릴꺼 같음
-
내일은 푹 쉬어볼게요
-
못생긴 여자도.
-
호감도 해봄 5
"호감도" 했음
-
여중생 나올듯ㅋ
-
저러면 해줄수밖에 업잔아....감동
-
댓글로 이유를 적어주세요....
-
난 비흡연자고 앞으로도 비흡연할 거지만 스트레스 받을 때 가장 가성비좋게 해소가...
-
사문 도표 5
화1 하다가 사문 넘어와서 도표특강 들으면서 기출 푸는데 도표가 왜 진짜 어려운건지...
-
호감도 메타 참전 31
100점 만점
-
허구한날 명품 아이쇼핑으로 집에 돈 많다는거 비틱하고 인증사진 뇌절 세번이나 올리고...
-
1년동안 빡세게해서 이성적 유지하면 가능한 점수대 인가요?
-
안올릴거긴한데
-
인증단 처단은 개뿔 지원하자는 생각이면 개추
-
근래에 이보다 마음에 드는 작품이 없었네요. 모든 장면이 참 좋았습니다. 특히...
-
인간실격 에휴
-
큰 일 났 다!!!!!
-
호감호감ㅠㅠㅠ
-
코딩과제 완료 반수준비 시작
와......

올라가십쇼
올라
가
라

올려드리자무엇하시는분인가요 이분?ㄷㄷ
논리화학형 수고하셧어요
윤갤에서 많이 뵙던 분이네요
형때매 ㅎ르비계정팠다 ㅅㅂ
논화형 화학 인현강 차이커? 고2인데 지금 훈구개념시작하고 기출, 고석용 킬특하고 내년 시대 현강 갈까?
내년 시대 현강 가서 서바까지 ㄱ. 차이 생각보다 좀 있음. 풀이보다도 실모차이?
아 고마워 형, 올해는 걍 정훈구 풀커리만타고 충분할까? 이제 막 시작해서..
그리고 이윤희 강준호 두쌤이있는데 나은 분 ㅊㅊ 해줘 고마워 형
나도 형나가고 윤갤접엇어
두분다 좋을거고 나는 이윤희쌤밖에 잘 몰라. 정훈구 풀커리...느낌보단 그냥 그때그때 해야할거를 잘 해봐. 실모는 아직 풀 필요 없을거야.
ㅇㅋㅇㅋ 땡스 무작정 풀커리타려하지말고 개념- 기출 그냥 그때그때 해야할것잘해놓으라는뜻??
ㅇㅇ 고2때 풀커리는 독이야그리구
고마워형 항상 행복하셈
여기서 말하는 평균변화율은 어떻게 구하는건가요?