[이동훈t] 9모 가형 20번 근사적 풀이
게시글 주소: https://a.orbi.kr/00032279793
안녕하세요.
이동훈 기출
수능 수학독본의
이동훈 입니다.
9모 가형 20번의
그래프의 개형을 이용한
근사적인 풀이에
대한 문의들이 있어서
해설지 작업이
아직 다 끝나지 않았지만
일단 올려봅니다.
y축에 대한
정적분/구분구적법이
아니냐 ...
라고 말하면 할 말 없긴 한데.
이과생이라면
이 정도는
납득 가능한 수준이라고
생각합니다.
그리고 합성함수의 그래프의 개형을
잘 ~
그리면
위와 같은 엄밀한 계산까지
할 필요도 없겠지요.
이번 주안에 해설지 업로드 하겠습니다.
감사합니다 ~~ :)
ㄱㄹ
2ㅁ
.
.
.
가형 20번의 분석이 마음에 들었다면 ~
2021 이동훈 기출문제집 오르비 atom 책 페이지 (아래)
2021 수능 수학독본 수학2 (전자책)
https://docs.orbi.kr/docs/7636
2021 수능 수학독본 미적분 (전자책)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공인인 윗대가리들이 저런생각을 외부로 발설하면 어쩌자는;; 괜히 이화여대 숙명여대...
-
원나블 마냥 긴건 못보겟음
-
투데이 있잖아요 3
이거 내 프로필 눌러본 사람 숫자인거임?
-
위치도 나쁘지 않은 것 같은데…
-
수능 전에도 욕 먹었고 지금도 욕 먹으면 그대로 아님?
-
수시 서울대학교 의예과 수시 교과전형 합격 경희대학교 한의예과 수시 학생부종합전형...
-
정확하게는 해외여행은 아니고 얼떨결에 출장 따라오게 되어서 지금 외국에 있는데...
-
수험생땐 강박이 있어서 부지런했는데 지금은 강박도 없고 자취하니까 며칠 뇌에 힘...
-
씹덕이 미래다 6
이거진짜임 씹덕시장이 미래임
-
캠퍼스 개이뿜 경한 가고싶어서 우럿서
-
챗지피티 대단하네
-
이 시점 여대 14
가는 거 맞음? 이대 얘기임...
-
대가리깨지겟다
-
수2미적은 나쁘지않다고생각해
-
지금 낙지 기준으로 가천한은 될 것 같은데… 원광 동국 아닌 지방 사립 한의대에서...
-
필수본듣는데 수능맛보기만 해도 대가리 계속깨짐.. 뭘 어케풀어야하는지 감도 안잡힌다...
-
한글 안 줘서 변환도 다 해야하고 글에다가 네모치고 해설 적고 3개년치도 1달은 걸리겠는데
-
헤어질 수 없어요~
-
ㄹㅇ어케씀..
-
. 2
-
수학 100을 위한 적절한 공부량이 어느정도 일까요 0
이미 1등급은 나온다 가정했을때 킬러 준킬러 마스터를 위한 하루에 풀어야될 문제...
-
모든 표본이 다 업로드되는게 아님? 왜 경쟁률이 5.몇이라는데 합격자 18명...
-
상황 다 알아도 여기 사탐러는 지원 자체가 불가함
-
걍 미쳤네 몇번을 돌려보는건지 ㅋㅋㅋ
-
부자들이세금몇퍼더낸다고 화내는느낌이이ㅑ 화낼수는이ㅆ는데 휴학강요하고.. 이기심너뭈쌔...
-
미쿠전개다요
-
과제대신해줄사람 13
업나
-
올해기준 수특 레벨2 거의다풀고(가끔 한문제 모름) 레벨3은 단원편차 심한편인데...
-
심심 2
밋밋
-
코노 노추 받음 7
고음 노래 좋아함 발라드 좋아함 락발라드 좋아함
-
지구 - 이훈식 vs 오지훈 생명 - 한종철 vs 백호 선택해주세요 다른 선생님...
-
진짜 이무과나 상관없는데 당연히 안되겠죠?.. 스나도 안될려나요?… 진학사나 텔그나...
-
등급을 알려드리긴 어려운데.. 국수는 망 에 비해 탐구를 잘 봤는데 문과로...
-
언매확통한지사문 싹다 백분위1차이로 컷에걸린 높은2-3이라...
-
적분 질문 6
논술 풀면서 적분할때 인테그랄 안에 sinxdx를 적는개 있었는데 제가 겹쳐서 잘...
-
대구쪽 초중 위주 학원 조교 지원했는데 3개월만 하고 서울 간다니깐 그럼 출퇴근은...
-
오르비에 슈퍼루키 두명 drop ㅋㅋ
-
세상은아름답고 난그아름다운세상에 다이빙중 모두해피
-
찍어보고싶다 흠
-
입대 시점은 고민중입니다만 1년 안엔 가지 않을까 싶어서요... 혹시 그 전에 하면...
-
화2가 낫다는 거는 뭐지 재수를 원한다면 화2가 맞다 수능에서 가장 재능타는 과목이...
-
바이바이
-
올해 사관학교 미적분 28번과 수능 미적분 28번 같은 교수님이 내심? 0
문제형식이 유사하고 수능에서는 계산을 더 물어봄
-
두각 라이브반 5
두각은 시대처럼 라이브반 없나요? 올해 의대관 다니면서 김진영쌤 수업 너무 좋았어서...
-
마라톤 완주하면 메디컬 가능한가요
-
커트 코베인 5
락 음악 역사상 최고 GOAT
-
올해 모논 다들 풀어보셧나요?
-
라면사리를 곁들인. . .
-
한 번 더 하면 세 급간정돈 가능할거 같음
-
주짓수나 복싱은 스파링 무서워서 못하겠음 어릴 때 스파링하다가 상대가 엎어치기...
그렇습니다 ! 위의 그림에서는 직사각형을 그리지 않았지만, 각 쪼개진 선분을 밑면으로 하는 직사각형을 여러개 그려서 구분구적법으로 정적분의 값을 생각해본다면, 넓이가 점점 커지는 것을 관찰할 수 있습니다. 그리고 위와 같이 수식을 이용한 풀이 역시 짧고 간단합니다. 따라서 이 문제는 그래프의 개형을 이용한 근사적인 풀이까지도 열어두었다고 봐야 하겠습니다. :)
안녕하세요 선생님. 만약 sin(pi+sqrt(p))=sinsqrt(p)가 맞는지만 클리어가 되면 너무 멋진 풀이가 될 것 같습니다.
제가 지금 12시간동안 수학만 보고 있어서 뇌가 굳었는지, 이 부분이 맞는지 잘 모르겠습니다.
만약 sin(pi+sqrt(p))=sinsqrt(p)가 아닌 sin(pi-sqrt(p))=sinsqrt(p) 가 맞다면, 아마 부등식이 반대로 나와 보여지지 않는 것 같습니다.
가르침을 주세요 ㅎㅎ 좋은 관점 하나 배워갑니다 ^_^
(물론, y축 적분을 불편해하는 불편러들이 있겠지만, 수학적으론 매우 타당하니까요)
밥먹다가 문득 생각났습니다. 아마 간단한 오타 수준이었던 것 같아요. (메이비 부호실수)
잘 고치셔서 올려주실거라 생각합니다 ㅎㅎ 그 풀이는, 맞는 풀이가 될 거구요.
내일 쯤 제 글 상단에 선생님의 풀이를 같이 첨부하여 '이렇게 하면 개형풀이도 옳다.'라고 보여주고 싶어요!
저도 선생님같이 정확한 해설만 있는 기출서를 한번 써보고 싶은데, 언제가 될지..ㅎㅎ 리스펙합니다~
제가 처음에 올린 수식에 오타가 있어서 정정하였습니다. :)
사실 위와 같은 발상, 풀이는 대부분의 수험생이 시험 시간 안에 할 수 있을 것 같지 않습니다. 대부분의 수험생분들은 그래프의 개형 그리고 ... 왠지 이렇게 하면 답일 것 같은데. 이 정도에서 답을 구할 것이구요.(시간이 남는다면 계산으로 확인을 하는게 현실적이겠지요.) 더더욱 5지선다 이기도 하고, 수열의 규칙성이 짝홀에서 뭔가 벗어날 것 같지 않기도 해서 ... 1번을 답으로 할 가능성이 높겠지요. 출제자 입장에서도 그 이상 뭔가 더 꼬거나 함정을 팔것 같지는 않구요. 물론 수능에서 이걸 노리고 출제할 가능성이 없는건 또 아닙니다. 그런 식으로 난이도 높이는 시험이니까요. 그래서 위의 문제는 어디까지나 계산을 이용한 풀이가 첫 번째 풀이일 것입니다. 위의 풀이는 위험 부담은 있지만 시간 확보를 위한 것이구요.
댓글 감사드립니다 ~~ :)
네, 저도 같은 입장입니다.
학생이라면 둘 다 어느정도 허용한다. 약간의 확률을 믿는거지만, 다수의 직관이라면 어차피 틀려도 같이 틀리고, 1컷은 똑같이 움직일테니 상대적 손해는 없을거구요.
하지만 가르치는 입장에선 직관과 더불어 정확한 해법도 제시해야하잖아요~
아마 이동훈 선생님도 위와 같은 증거(?)가 없었다면, 단순한 직관 정도로만 소개/제시하고 넘어갔을거라 감히 궁예질을 해봅니다 ㅎㅎ 감사합니다.
모든 강사분들의 고민인것 같습니다. 직관에 의한 풀이, 엄밀한 풀이, 그림에 의한 풀이, 수식에 의한 풀이, ... 수험생마다 원하는 것이 다 다르기 때문에 학파 같은 것이 생기기도 하구요. 수능 난문의 경우에는 직관적으로 답을 미리 결정하고, 이를 어느 깊이까지 증명할 것인지가 항상 고민이 됩니다. 선생, 학생 모두 그러할 것입니다. 감사합니다 ! :)
역시나 같은 고민을..ㅎㅎㅎ '직관이 우선이며 진리다.' 라고 믿고 있는 학생들이 꽤 높은 비율로 있는 것 같은데.. 그렇게 같은 패턴으로 무너졌던 직관력 좋았던 고3 학생 출신으로써 정말 비추하고 싶네요ㅎㅎ 직관은 최선이 아니고 차선임을 꼭 알아줬음 좋겠어요.
좋은 저녁 되세요~
시험에는 조금이라도 의심스러우면 논리적으로 증명하는 것이 답이겠지요.
좋은 밤 되시길 ~ :)
합성함수를 잘 그리는 건 구체적으로 어떻게 그리는 건가영
합성함수 역시 함수이지요. (합성)함수의 그래프의 개형을 그릴 때에는
곡선이 지나는 점 (특히 항상 지나는 점)
어떤 점에서의 접선의 기울기로 오목볼록의 판단
이 두 가지만 잘 고려해도 예쁘고 정확하게 그래프의 개형을 그릴 수 있습니다. 이 문제의 경우에도 함수 f(x)의 그래프의 개형을 그냥 쫙쫙 긋는 것보다는 ... 점과 기울기, 볼록성을 판단하면 깔끔하게 그려집니다. 감사합니다 ~~~ :)
혹시 2022버전 가형 교사경은 언제쯤 나올까요?
3학년 학평이 끝나는 직후 (11월)이 될 수도 있고, 2학년 학평이 끝나는 직후 (12월)일 될 수도 있습니다. 아직은 고민중입니다. 늦어도 12월 내에는 출시됩니다. :)
2021 가형 이동훈 교사경 문제집이랑 2022가형 이동훈 기출 문제집이랑 문항 선별,배치 및 해설 등의 부분에서 큰 차이가 있을까요?
(2022 교사경 대신 2021을 구매해서 풀어도 될까요?)
2022 에는 2021 에 비해서 추가문항이 적지 않을 것이므로 가능하면 2022 버전으로 푸는 것이 나을 것입니다.(2022 수능을 대비한다면 말이죠.) 해설은 큰 차이는 없을 것이고, 문항 선별은 좀 달라지고, 배치도 달라질 가능성이 있습니다. 다만 2021 버전을 풀고, 여기에 올해 교사경 기출을 시험지로 풀고 하면 괜찮긴 합니다. 감사합니다 ~~ :)