미분을 하는 이유
게시글 주소: https://a.orbi.kr/00032311656
안녕하세요.
수학강사 이승효입니다.
오늘의 주제는,, "미분을 뭐하러 해?"
먼저 아래 문제를 봐주세요. 이번 9월 모평 가형 18번입니다.
나형 학생도 풀수 있는 문제입니다.
나형이라면 '호옹~ 우리가 풀수 있는 문제도 가형에 나오다니,,'
가형은 '어라, 문제가 좀 다른데?' 라는 생각이 들지요?
네, 가형은 아시겠지만
문제에 출제된 f(x)는 저런 형태였지요?
(나형 학생들도 좌절하지 말고 끝까지 읽어보면 도움이 될거에요. ^^)
그런데 처음 함수처럼 f(x)가 쉬운 형태(다항함수)로 나오더라도,
이 문제의 해결전략이나 풀이방법은 전혀 달라지지 않습니다.
여기서 우리가 알아야 할 것은
평가원에서 함수추론 문제를 만드는 방식
이에요.
평가원에서는 종종 복잡한 (또는 복잡해 보이는) 함수의 식을 던져주곤 합니다.
수학 고정 1등급의 고인물수라면
'나에게 어떤 함수를 던져주더라도 전부 미분해 버리겠어
(심지어 두번미분)'
라는 마인드로 함수를 탈탈 털어버린 다음에
그걸 이용해서 문제를 풀어도 시간이 모자라지 않겠죠.
그렇지만 평가원 문제 중에서
오로지 식으로만 풀어야 하는 일부를 제외한 대부분의 함수 문제는
복잡한 함수를
"같은 성질을 가진 매우 쉬운 함수"로 치환하더라도
같은 방식으로 풀리도록 문제가 성립합니다.
왜 이런 현상이 벌어질까요?
문제를 제작한 경험이 있는 분들은 잘 알고 계실겁니다.
문제를 만들때, 밑도 끝도 없이 복잡한 함수 식부터 세우고
문제를 만드는 것이 아니라
1. 특정한 교과서 개념을 확인할 수 있는 상황을 설정하고
2. 그 상황에 적합한 함수 식을 만든 다음
3. 만약 문제의 난이도를 올리고 싶으면
같은 성질을 갖는 좀 더 복잡한 함수로 업그레이드 한다.
이런 식으로 문제를 만드는 것이 일반적이기 때문이에요.
즉, 이렇게 복잡해 보이는 함수 문제에서 중요한 것은
1. 함수의 중요한 성질을 빨리 캐치한다.
2. 쉬운 함수로 바꿔서 그래프의 개형을 추론한다.
3. 개형을 이용하여 문제를 아주 쉽게 푼다.
인 것입니다.
이러한 원리는 이번 18번에만 활용되는 것이 아니라
평가원 기출에서 폭넓게 활용되고 있답니다.
기출분석이 끝나고 암기까지 된 학생이라면
이번 f(x)안에 있는 로그함수와 이를 이용한 g(x)의 정의가
2018학년도 6평 30번의 재활용이라는 걸 바로 캐치해냈을거에요.
주어진 함수의 중요한 성질(대칭성, 아래로 볼록)만 파악해서
f(x)를 2차함수로 바꿔 버리면 쉬운 수학2 문제로 바꿀 수 있죠.
다시 원래의 질문으로 돌아가서 글을 마치려 합니다.
미분을 뭐하러 해?
미분은 함수의 성질을 모르니까 한다.
예를 들어, 3차함수의 식만 보면 이 함수가 극점을 갖는지 안갖는지
어디서 증가하고 감소하는지 알수가 없죠.
즉, 숨은 성질을 찾는 함수의 해석도구가 미분인 것입니다.
이번 18번 문제에서 주어진 함수는
1. 원점을 지나고 양수구간에서 증가하는 함수이다.
2. 구간 (0,1)에서 함수는 1보다 작다
-> 10제곱하면 미친듯이 더 작아진다.
라는 두 가지 성질을
미분이라는 도구 없이도 충분히 찾아 낼수 있습니다.
미분의 꿀팁 중 하나는, 신기하게도,
미분을 쓰지 않는 것이에요. (!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버잠 3
이제 진짜 자러갑니다 님들도 잘자시고 좋은꿈(순대꿈) 꾸세용 빠이
-
브이~ 16
이제 진짜 다 봤을듯
-
생명이랑 생윤 중에서 고정1 받으려면머가 더 오래걸릴까여 + 생명 1등급 생윤만점으로 변경할게여..
-
ㅇㅈ 9
ㅎㅎ
-
자러감요
-
메타가 왜이래
-
어리고싶다 6
에휴
-
폰 바꿔야지 0
개똥폰 진쩌
-
오늘 한거 ㅇㅈ 1
식물샵 놀러가서 사장님 거북이랑 놀기
-
대학 가면 ㅇㅈ해야지 13
。◕‿◕。
-
요새 바빠서 떨치지 못했더니 좀...
-
하아..
-
맞팔 구합미다 6
고고
-
쿠킹덤 ㄹㅈㄷ 8
계정 잃어버려서 리세 돌려서 미플 얻고 거짓빛 현질 해서 뽑았더니 흑화한 남도일이...
-
투표좀 0
두닉중 어떤 닉이 저한테 어울렸어용?
-
뭐먹고살아야돼님 0
나랑사귀자(ㄷㄹ)
-
수정) 이미 팜 @black_hitoribocchi
-
영원히안한다는뜻
-
지금까지 깨있어버림...
-
막차 13
7
-
뉴런 1
다른 실전개념강의랑 다른점이 뭔가요? 왜 실전개념의 대명사일까요
-
반대로 만점 받으면 진짜로 바로 옯밍아웃함
-
텝스401 0
ㅁㅌㅊ?
-
여장 남장 4
드립이죠?? 아니면 진짜 좀 혼란스러운데??
-
존못아조시ㅇㅈ 13
폰 보면서 찍으니까 눈이 너무 깔아지는••
-
길다가 마주치면 아는사람인줄 알고 인사할것같음
-
홍대 기계 추합 3
64명 정원 예비 43번인데 몇차 추합때 될지 궁예좀~~ 왠지 올해 많이 안돌거 같다~ㅜ
-
지금부터
-
존예 의대녀 봄 세상 왜 이렇게 불공평하냐
-
삼겹살 웅
-
나만 이산한가
-
추합 조발 0
추합 조발하게 되면 1차만 조발인가요 아니면234차도 저녁에 조발할까요? 그리고...
-
글만 보이고 글 사진은 안 보임
-
가난이 군대같이 오리라
-
얼버잠 3
ㅇㅈ 다보고 난 ㅇㅈ안하고 자야겠다 ㅎㅎ
-
오늘 화력 보면 하면 안되겠네 무셔
-
왤케 무한 로딩임?
-
사진을 올려줘 나 빨리들어갔는데 안보이잖아!!!!!
-
프사던 댓글 사진이던 게시글 사진이던
-
인증끝남? 1
더줘
-
메인은 가보고 싶다 ㅇㅈ 화력은 정말 대단하구나
-
얼굴 학력보다 일당 하체가 먼저 들어오는데
-
여장 만능론 5
남자 사귀고 싶음>>>여장하면 댐 오랜만에 여자 만나고 싶음>> 화장 안 하면 댐
-
끝났냐? 0
잔다
-
하 진짜
-
이거 진짠가요 8
인스타 릴스에 뜨는데 진짠가
-
인증다놓쳣네 4
나도이제오르비를 잘 안하게 되는구나
-
내가 팔로우 한사람 전부 해당.
-
휴릅하고와야지 1
3분정도만..
함수를 바꾸는게 문돌이한테도 해당사항이 있을까요..? 어차피 해봣자 3차 4차일텐데
문과라면 ‘함수를 바꾼다’라기 보다는, 복잡한 상황이 나왔을때 ‘이 함수의 그래프는 분명히 쉬운 개형 - 기출에서 본적이 있는’라고 생각해 보면서 그래프의 개형을 그려보면서 접근하는게 좋아요. 칼럼의 포인트는 ‘평가원이 문제를 만드는 방식’을 생각하면 반드시 쉽게 풀릴것이다, 라는 것이에요. 시험장에서는 어렵지만 해설강의를 듣고 나면 쉽게 느껴지는 것이 그러한 이유입니다. 힘내요~
음..기출에서 본적있다 함은 뭐,,절댓값 함수 미분가능하면 중근 뭐 이런걸까요? 그걸로 복잡한거에서 중근 찾아서 빼고 이런식으로 하는건가..잘 감이 안잡히네요
나형 버전 칼럼은 나중에 따로 올려볼게요~
넵 감사합니다 !!
첨보는 칼럼인데 ㄹㅇ 도움되네요.... 문제내는 원리에서 근거가 있군요