자작문제
게시글 주소: https://a.orbi.kr/0003232910
아쉽게도 제가 답을 적어놓은 종이를 잃어버려서...풀이를 구합니다^^;
형식은 수능문제지만 수능에 나올 만한 문제는 아닙니다.(한 문제에 너무 많은 걸 물어보므로)
고등학교때 경우의 수 구하는 문제가 있었는데 그걸 약간 일반화시켜 수열화해서 만들었던 걸로 기억합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐하지…
-
성적...? 헤으응
-
아는 지인이 오늘 서울대 수학과 면접 봤는데 면접 방식이 수학문제 풀기라는 거...
-
얘드라 하이하잉 4
-
재수 한국교원대 삼수 약대임 ㅋㅋ 지금봐도 ㅈㄴ 올리긴했노
-
차라리 생1지1을 하는게 낳아요 문과분들도 과탐런하세요~
-
목표는 중경외시였지만 이번수능은 경북대가 최대인거같네요. 대학 가더라도 한번 더...
-
ㅊㅊ
-
지방메디컬은 사탐 허용 학교가 희귀함. 몇개 있다는데 일일히 찾긴 너무 많아서...
-
걍 투과목 표점 1
떡상하게 해주세요
-
그.. 대학을 안 물어보시고 전공만 물어보셔서 대답해드렸더니 오해를 산 것 같네..
-
파이널집 들으면서 늘 그 생각함
-
ㅠㅠ 우리엄마 6평9평보고 기대 많이 하시던데 하..
-
재수하는데 빨리 사서 풀고싶음
-
진짜 개망할뻔 했네 스토브리그 보는거에 몇시간이 지나가는거야 ㅋㅋㅋ
-
일단 저는 수능이 미응시처리 되었습니다 가천대 논술은 가보고 싶었는데 아쉽네요.....
-
3학년임
-
이렇게 추운 날에는 14
뜨끈한
-
반대로 전공과 무관한 일로도 먹고 살기가 가능한게 요즘인거 같음
-
안녕하세요 전역6개월남은 육군 군수생 입니다 22살 이고 내신 6등급 이였고...
-
잘 안팔렸나 당황스럽노.......
-
화학이 37 점이 나와버렷는데 3등급 가능할까요?? 논술 최저가 걸려 있어서 일단...
-
멍청한 나도 대충 괜찮게봄뇨
-
연논 1
어케될까요
-
니 인생이니 알아서 해라 대신 대학 졸업하는 순간 지원은 없다.. 어머니 감사합니다.. ㅠㅠ..
-
학교 면접 때문에 공강이었는데 강의실 온 사람은 뭐지 8
그런 사람이 나네...
-
물1지1 고려중 2
1. 물리가 좋아요 2. 과탐할거에요 3. 시대인재 재종은 너무 비싸서...
-
시험지 받고 파본검사할때 눈풀함
-
독학 재수 인강 0
23224(언미생지)입니다. 최대한 인강 빼고 해보고 싶은데 그럼에도 꼭 들어아햐는...
-
지1 231115: 현장에서 보자마자 "해령 먹혔네" -> 딸깍 수학 251121:...
-
고사국 vs 서성한공 10
진학사 아직 후한거같아서 이거 두개 성사될지 모르겠는데 일단 비교해보면 어디가 더 나은가요?
-
https://m.hankookilbo.com/News/Read/A2024112112...
-
생윤은 하루에 3시간 해야되는데 물2 < 생윤 이라고 하면 욕먹겠지? 물2은...
-
학원 매일 정기적으로 조퇴할 수 있나요?
-
8시~4시 물2 4시~10시 지2 집가기 ㅋㅋㅋㅋㅋㅋㅋ
-
ㅎㅇ 4
ㅎㅇㅎㅇ
-
2026학년도 수능 볼생각임 강윤구 들어보니깐 ㅈㄴ 좋은거같은데 전에 2024수능이...
-
수학 공통 중 23이 젤 쉬웠음 (당연 현장임) 이유: 15,22 감각적 직관으로 딸깍딸깍함
-
탐구 변표 3
올해 탐구 어려웠는데 불변표 나올까요
-
이러면 모든 상황이 냅다 들어맞고 너무 이쁘다 그냥 이걸로 가자 약간 수학 다항함수...
-
연애하고 싶다 8
-
안녕하세요 재수해서 이번에 백분위기 74 94 2 95 96 나왔는데요…ㅠㅠ 국어...
-
어릴때 와이책 보고 외계인이 잡아갈것같아서 창문 두개 다 꼭 닫고 커튼치고...
-
아니아니 변표 21
정시에서 변표를 안 쓰고 통합 변표를 쓰면 과탐 가산점 없으면 사탐이 매우매우...
-
동생꺼라 한 번만 봐주세요 ㅠㅠ
-
걍 할게 없네 ㄹㅇ
-
개사기 같음 돈복사 버그 거의 유료주차장급인데 돈은 엄청벌음
-
개웃김ㅋㅋㅋ
-
고대 정시 내신 3
체육,통합사회,생1,고급수학 이런거 전부 다 포함임?
포함과 배제의 원리에서 a_n = 3^n - 2^n - 2^n - 2^n +1^n +1^n +1^n = 3^n - 3* 2^n +3
b_n = 3*2^n-1 (첫자리는 3가지, 그 다음자리부터는 항상 2가지 가능성)
c_n = b_n - 6 = 3*2^n-1 -6 (단, n>=2일때) (b_n에 해당하는 것들 중, 맨 앞 두 수(예를 들어 1,2라고 합시다)가 1 2 1 2 1 2 ... 이런 식으로 반복되는 유형만 제거하면 되는데, 맨 앞 두 수가 결정되는 방법의 수는 6가지이므로)
d_n 은 대충 생각해도 맨 마지막 자리가 1,2,3 중 약 1/3씩 분배될 것이라 알 수 있으므로(맨 앞자리도), d_n /c_n 의 극한은 1/3이 맞을 것입니다. 하지만 직접 d_n을 계산해봅시다. c_n 중에서 맨 앞자리=맨 뒷자리 인 것의 개수를 e_n 이라 하면,
1.. c_n = d_n +e_n (이 식은 필요는 없지만..)
2.. d_n+1 = d_n +2e_n
3.. e_n+1 = d_n
입니다. 2,3번 연립 -> d_n+1 =d_n +2d_n-1. 풀면(특성근 등등) d_n = u* 2^n + v*(-1)^n (u,v는 상수)
d_2 =0 , d_3 =6 을 이용하여 u,v를 계산하면, u=1/2 , v=-2. 따라서 d_n = 2^n-1 +2(-1)^n-1. 따라서 극한은 1/3.
풀이를 적은 종이를 잃어버려서.. 라는 멘트는 누구의 멘트와 비슷한데..ㅎㅎ
와우! 정말 잘 푸시네요. 이 문제는 사실 d_n을 구하는게 핵심인데, 이렇게도 풀 수 있겠끔 보기를 저렇게 만들었던 것 같습니다. 그래도 a_n~c_n은 굉장히 쉽게 구하셨네요ㅎ 라고 쓰는 중에 dn까지 구하셨네요! 대단하십니다ㅎ