고난도 문제 투척
게시글 주소: https://a.orbi.kr/0003232948
1,2번은 수능4점짜리보다는 어려울텐데 그냥 4점이라고 했습니다. 3번은 아이디어만 있으면 쉽지만 역시 수능에 나올 스타일은 아니니 심심하신 분들 풀어보세요^^ 자작은 아닙니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
말을 하면 된다
-
좋은 아침? 10
-
둘 다 합격하면 어디가세요?
-
국어가 망해서 ㅜ 108 132 3 64 62 면 세종대 낮공 가능한가요 ㅜㅜ
-
넷다 존예..
-
문디컬 도전 생각중인데 원래 동아시아사는 일단 할 생각이였고 배경지식 어느정도 있는...
-
입결 ㄴㄴ 그냥 미래나 병원 전망 등등 으로좋은 순위요.. 경한이 1등일거고.....
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
입결은 반영비따라 매해 바껴서... 그냥 병원이나 선후배 전통같은거만 보면요 당연히...
-
서 연 카 성 고 울 다음...
-
입대 지금 바로.
-
개인적으로 서울에서 한번 살아보고 싶기도하고 과도 역시 공대로 가는게 맞지않나...
-
쌍지 했는데 ㄹㅈㄷ 점수나왔음 … 생윤 사문중에 하나 해야하나
-
컷이 졸라게 높던데
-
회귀시켜줘 2
제방
-
글 리젠 뭐야 1
뒤졋네
-
“수능 경북 수석은 현역 의대생” 술렁...의대생 수능침공 현실화? 12
경북 지역에서 의대생이 2025학년도 대학수학능력시험(수능) 가채점 결과 수석을...
-
샤를 직접 보니 가슴이 벅차올라요.. 교수님이 들어오면 뭐하고 싶어요? 이러셨는데...
-
지금 통계학과, 경제/경영, 전기전자 정도 생각하고 있는데
-
수리논술 5
이거어케푸는지 아시는분 ㅎㅎ.. 좀 끄적여본건데 일단 제가풀어본것도 올려바요.....
-
수리논술 질문 1
인하대랑 건대 어디가 더 붙기 힘들죠??! 인하대 최저xx 건대 최저 2ㅎ5
-
지도덕후여서 우리나라 지자체 200여 개 세계 나라 200여 개 위치랑 이름 다...
-
코인 논란 ‘찐명’ 김남국, 野과세론 비판…“운동권적 사고서 벗어나야” 4
“시장 친화적인 경제적 마인드 탑재해야” 소위 ‘찐명’(진짜 친이재명) 이라고...
-
이재명 “코인 과세 가능한가”…금투세처럼 폐지 길 가나 [이런정치] 6
이재명, 비공개 지도부 회의서 ‘과세 가능한지’ 의문 수차례 제기 “해외거래소 통한...
-
화미사탐지구로 26수능 참전
-
안돌거같네
-
쌍사vs쌍윤 1
둘중 머가 나음?
-
기사아아앙 6
다시 취침
-
자연대 중 택1 (수리과학부 제외) 지방 약대 수의대 중 택1 어디가심?
-
근데 설마설마 0
이번 화1 2509물1 (만백 93) 꼴 나는건 아니겠죠 그러면 진짜 안되는데
-
왜살아야함? 10
수능>망함 친구>없음 나이>많음 살>존나찜 얼굴>좆망 행복>없음 추억>없음 정신>병듬 인간성>좆박음
-
걍 무조건 사탐이 나은거임?
-
근데 난 미적보다 기하를 더 못할 듯.. 공통에서 수1도형이 최약파트 중 하나
-
블부이 기상 10
공강 개꿀
-
좀 전에 내년 선발인원이 떴는데 올해 대거 미지정사태에도 꼴랑 50명 줄여놓고...
-
창팝 추천좀 3
이해가쏙쏙되잖아리슝좍이랑 리미제라블시리즈랑 쌀숭이 바리정같은 초 네임드는 봤음
-
사실 로스쿨을 ‘안’ 가는 것보다 ‘못’ 가는 거에 가까워보이긴 하는데…
-
과탐 하나 노쇼하는 꿈 꿨네 하
-
서울대 1차 떴냐? 11
나도 슬쩍
-
제가 살면서 주변을보면 자기가 하고싶었던거 있었는데 꿈을 접고 성적에맞춰...
-
올해 진짜 공통 역겹게 나왔었는데 25공통 반영해서 좀 쉽게 내려나 아니면...
-
국어와 수학은 "강"평 ㅋㅋ
-
안녕하세요 단국대 치의학과 4학년 학생입니다. 혹시 충청 또는 천안에 사시는 분...
-
번호별문제 다 이렇게 갖다박으면 ㅇㅇ 물론 이문제들 싹다 처음 보는거라고 가정하고 ㅇ
-
덕코 9
다 털었다 이제슬슬장례식을
-
내신은 3.6 모고는 44344인데 우리학교가 수시로만 학교를 보내서 정시를 그다지...
-
고3 부터 왜케 살쪘냐는 소리 많이 듣네
-
정시 기균 라인 좀 잡아주시명 감사하겠습니다 ㅜ
-
3번에 D국이 국민들 입장 물어보는거 반대친 사람 있을까요?
-
마음을 어떻게 추스려야 할지...
1번 대충 풀어서 10이 나왔는데 보기에 없네요 ㅡㅡㅋ
ㅎㅎ 1번을 저도 따로 풀어본 건 아니고 일반적인 2번 답에 대입해본 거네요. 정신이 몽롱해서 자고 일어나서 생각해봐야겠군요ㅋ
한번 풀어봐야겠네요.
매번 풀어주셔서 고맙습니다ㅎㅎ
으음... 지금 풀고있는뎅.. 1번은 12312454332 인거같아요 (왼쪽에서 6번째숫자)
아. 정답!! 쉽지 않은데 잘 푸셨네요^^ 미분 혹은 삼각함수 a sin x + b cos x 형태의 최대는 루트(a^2 +b^2 )이다를 이용하신 건가요?
네...각 세타잡고 삼각함수에 관한 식 세운다음에 한변의 길이가 최소가 되려면 뒷부분 삼각함수 합성이 최대가 되면 되는것 같더라구요...
근데2번 3번은 너무 어려운것 같아요.. 제실력이 부족하긴하지만 ㅋ 일반화하는게 힘드네요.. 3번도 뭔가 새로운 생각이 필요한것 같은데... 치환이나 부분으로 안될것같구 ㅠㅠ
아니에요. 정말 잘 푸셨어요~ 2번은 계산이 많이 복잡하고 어려운 것 같아요. 3번은 아이디어만 있으면 간단한데 처음 보면 생각하기 쉽지 않은 것 같아요. y=sin x 가 x=pi/2 중심으로 구간 [0,pi]에서 대칭인 것 이용해서 잘 치환하시면 돼요~
3번이 - integral (ln2) dx (구간 : 0~ㅠ/2) 가 나와서 - (ㅠln2) / 2 가 나왔는데.... 보기에 없네요.ㅠㅠ
[조심스럽게].... 혹시 보기에 pi가 빠진게 아닌가 싶기도 하네요.... ^^ 그렇담 ②번이 정답!
아.. 그렇네요.. 님 말씀이 맞습니다. 제가 보기에서 모조리 pi들을 빼고 안 썼군요..ㅋㅋ 지적 감사합니다! 거의 다 맞게 하신 것 같은데 2번이 아니라 3번 아닌가요~ (모든 선택지에 다 pi가 곱해져있다고 생각할때요..)
아.... 3번이 맞네요. 마지막에 2를 안곱했네요. ^^