자작문제 하나 처음으로 올려봅니다.
게시글 주소: https://a.orbi.kr/0003237359
처음으로 올려봅니다. 유형평가나 난이도 평가도 부탁드립니다. ^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얘드라 하이하잉 4
-
재수 한국교원대 삼수 약대임 ㅋㅋ 지금봐도 ㅈㄴ 올리긴했노
-
차라리 생1지1을 하는게 낳아요 문과분들도 과탐런하세요~
-
의약품합성학 2
이새끼 개같으면 개추 ㅋㅋ
-
목표는 중경외시였지만 이번수능은 경북대가 최대인거같네요. 대학 가더라도 한번 더...
-
ㅊㅊ
-
지방메디컬은 사탐 허용 학교가 희귀함. 몇개 있다는데 일일히 찾긴 너무 많아서...
-
걍 투과목 표점 1
떡상하게 해주세요
-
그.. 대학을 안 물어보시고 전공만 물어보셔서 대답해드렸더니 오해를 산 것 같네..
-
파이널집 들으면서 늘 그 생각함
-
ㅠㅠ 우리엄마 6평9평보고 기대 많이 하시던데 하..
-
재수하는데 빨리 사서 풀고싶음
-
진짜 개망할뻔 했네 스토브리그 보는거에 몇시간이 지나가는거야 ㅋㅋㅋ
-
일단 저는 수능이 미응시처리 되었습니다 가천대 논술은 가보고 싶었는데 아쉽네요.....
-
3학년임
-
이렇게 추운 날에는 14
뜨끈한
-
반대로 전공과 무관한 일로도 먹고 살기가 가능한게 요즘인거 같음
-
안녕하세요 전역6개월남은 육군 군수생 입니다 22살 이고 내신 6등급 이였고...
-
잘 안팔렸나 당황스럽노.......
-
화학이 37 점이 나와버렷는데 3등급 가능할까요?? 논술 최저가 걸려 있어서 일단...
-
멍청한 나도 대충 괜찮게봄뇨
-
연논 1
어케될까요
-
니 인생이니 알아서 해라 대신 대학 졸업하는 순간 지원은 없다.. 어머니 감사합니다.. ㅠㅠ..
-
학교 면접 때문에 공강이었는데 강의실 온 사람은 뭐지 8
그런 사람이 나네...
-
물1지1 고려중 2
1. 물리가 좋아요 2. 과탐할거에요 3. 시대인재 재종은 너무 비싸서...
-
시험지 받고 파본검사할때 눈풀함
-
독학 재수 인강 0
23224(언미생지)입니다. 최대한 인강 빼고 해보고 싶은데 그럼에도 꼭 들어아햐는...
-
지1 231115: 현장에서 보자마자 "해령 먹혔네" -> 딸깍 수학 251121:...
-
고사국 vs 서성한공 10
진학사 아직 후한거같아서 이거 두개 성사될지 모르겠는데 일단 비교해보면 어디가 더 나은가요?
-
https://m.hankookilbo.com/News/Read/A2024112112...
-
생윤은 하루에 3시간 해야되는데 물2 < 생윤 이라고 하면 욕먹겠지? 물2은...
-
학원 매일 정기적으로 조퇴할 수 있나요?
-
8시~4시 물2 4시~10시 지2 집가기 ㅋㅋㅋㅋㅋㅋㅋ
-
ㅎㅇ 4
ㅎㅇㅎㅇ
-
2026학년도 수능 볼생각임 강윤구 들어보니깐 ㅈㄴ 좋은거같은데 전에 2024수능이...
-
수학 공통 중 23이 젤 쉬웠음 (당연 현장임) 이유: 15,22 감각적 직관으로 딸깍딸깍함
-
탐구 변표 3
올해 탐구 어려웠는데 불변표 나올까요
-
이러면 모든 상황이 냅다 들어맞고 너무 이쁘다 그냥 이걸로 가자 약간 수학 다항함수...
-
연애하고 싶다 8
-
안녕하세요 재수해서 이번에 백분위기 74 94 2 95 96 나왔는데요…ㅠㅠ 국어...
-
어릴때 와이책 보고 외계인이 잡아갈것같아서 창문 두개 다 꼭 닫고 커튼치고...
-
아니아니 변표 21
정시에서 변표를 안 쓰고 통합 변표를 쓰면 과탐 가산점 없으면 사탐이 매우매우...
-
동생꺼라 한 번만 봐주세요 ㅠㅠ
-
걍 할게 없네 ㄹㅇ
-
개사기 같음 돈복사 버그 거의 유료주차장급인데 돈은 엄청벌음
-
개웃김ㅋㅋㅋ
-
고대 정시 내신 3
체육,통합사회,생1,고급수학 이런거 전부 다 포함임?
-
나 씹덕됨 0
바이 왤케 잘생김????
-
홈스쿨링 하다 올해 수능 짧게 준비해서 보고 내년 수능 제대로 준비해보랴 하는데...
불금 재미난 문제 투척 감사요~ 근데 함수가 -n<=x<=n 에서 정의가 되어야 하는데 x=0, 1에서 정의가 안 되는 듯 합니다.
아마 f_n 을 왠지 x=0에서 연속이 되게 정의하시려고 했다고 믿고 풀어보면.. (x=1에서의 정보도 필요하지만)
f_n (0)=0
ㄱ. f_1 (0)=0이고, x=0에서 극댓값 1개이므로 참. 01 극한은 -무한대.
ㄴ. n>=2에 대해서는 f_n이 x>=0에서 함숫값 0부터 출발해서 쭉 감소하다가 x=1의 좌측에서 -무한대로 감소. x=1의 우측에서 +무한대에서 시작해서 쭉 감소해서 x=n까지 쭉 감소해서 0이 됌. a_1 = -2, a_2 = 3, a_3 = 2 , ... , a_n = 2. 따라서 참.
ㄷ. x=+-1에서의 함숫값을 어떻게 정의하느냐에 달리긴 했지만, 맞는 것으로 판단됌.. 참.
미분해서 개형 그려보고 기울기가 양인지 음인지 판단하려면 계산 좀 해야 해서 난이도는 어려운 4점이 아닐까 싶습니다만.. 근데 ㄷ이 오히려 쉬운 것 같네요ㅎ 이거는 미분 안 하고 식만 봐도 나오니까요.
역시 syzy님 ㅋㅋ 열정적이심 ㅋㅎ
아 금요일인데 오늘은 힘이 좀 남아도네요..ㅎㅎ 어라 제가 쓴 글 다시 보다 보니 a_1 = 2인데 -부호 붙여놨네..ㅋ
아... 그러네요. -n에서 n까지 정의된..........이라고 써놓고 정작 x=0. 1,-1 에 대해선 언급이 없었네요. 정신을 어디다...ㅠㅠ
음.... x=0일때 함수를 연속으로 두려했던것 맞구요. 1과 -1일때는 그냥 빈채로 두려 했는데.... 정작 아무런 언급도 없었으니.... syzy님 지적해주셔서 고맙습니다.