올해 가형 21번 풀이에서
게시글 주소: https://a.orbi.kr/0003329774
문제풀면서 y=x 그래프를 도입해야되는걸 어떻게 생각하나요?
문제풀면서는 당연히 y=x그래프 기준으로 하는건 맞는데, 문제 처음볼때 그게 당연히 생각나는건가요? 다들 처음봣을대 어떻게 푸셧는지 ??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생활패턴 망했다 1
오전 7시 취침 오후 4시 기상 이게 뭐야 대체
-
김상훈T 0
독서 독해 방식이 어떻게 되나요? 그읽그풀 느낌이면 좋겟는데..
-
잠이 안와 씨바 3
나 자고 싶다고........ ㅅㅂㅅㅂㅅㅂㅅㅂ 어젯밤도 샜는데 왜 잠이 안오는데ㅜ
-
ㄱㄱ
-
기차지나간당 2
부지런행
-
진짜 잔다.. 2
다들 자요 빨리
-
으으
-
밤샐까.. 0
수면패턴 박살났는디 초기화나 시키게
-
양악하고싶다 0
-
선착순1명 18
가장 빠른 사람이라는 뜻
-
12시 이후부터만 ㅇㅇ.. 자야지이제
-
97점 99 76점 85 93점 1 45점 96 42점 96 언미생지 나는 이과지만 수학이 밉다..
-
에구구
-
18수능 국,수(가형),영,한국사,물2,화2,중국어 응시 각 원점수...
-
ㅇㅈ 10
마스크업으면무서웅
-
언제까지 이런 현타오는 일상을 살아야하지
-
또 불면증의 밤 4
엊그제도 밤을 새고 어젯밤엔 4시간 잤는데 또 잠이 안와???? 낮잠도 안잤는데 나...
-
최대한 안정적인 과목 원하고 둘 중에 하나만 꼭 고르면 머가 좋을까여
-
안녕하세요.. 7
요즘 바빠요
-
안자는 사람 손 9
가능?
-
수시6장 설대만지름 서울대의대 수시교과 합격 서울대 경제학과 학생부교과전형 합격...
-
나랑 정철할래? 1
-
그것은 바로 경제 왜냐면 전교에서 한명만 하거든
-
이분 닮은걸류 종결..
-
오르비
-
진짜 잔다. 4
10시엔 일어나야 해..
-
이게 이론상 가능한게 무서움...
-
이거들어바 18
-
시험장에서 어떤 개지랄을 했길래 이렇게 망쳤을까..
-
설컴 vs 설전정 했을 때 전정 가는 게 더 나을까요? 컴은 ㄹㅇ 재능 이러길래
-
눈팅하는 인해전술 인민군 수많명과 잠 못자고 깨어있는 호감고닉들의 눈치싸움
-
에휴씨부럴ㅋㅋ
-
통과 내신 1
며칠전에 시험본건데 나름 기출픽이나 오투 풀어서 통과 열심히 했는데 처음 보는...
-
출근핑
-
화학2 Kb가 1보다 클 수 있나..(23학년도 17번) 0
23학년도 17번. (나) 용액 화학2 Kb가 1보다 클 수 있나..
-
단, #~#은 1343313에게 당장 쪽지를 보내야 한다는것을 의미한다
-
왜 보고 싶어함?
-
논술 발표 1
논술 발표일 보통 몇일정도에 하나요? 성대 한양 중앙 작년에 언제쯤 했는지 궁금해요
-
와이파이 왤케 빨리 차..?
-
진짜 얼마나 감사한 일인지.. 걱정없이 새르비 쌉가능
-
오래된 생각이다...
-
음울하면서도 몽환적이었던 거 같다
-
살빼야되는데
-
지거국 낮은 과라도 상관없습니다..충남대,경북대,부산대,전남대 중 가능한 대학 있을까요..?
-
근데 반응이 당황스럽지만 감사합니다.. 예상치 못한 좋은 반응들이라
-
진짜 미리 성적표 다 뽑아놓나요?
-
자야겠다 5
아침보다 더 우울하네 하..
-
좆같음을 잊을수있게해야한다하나.. 유일하게 잘때랑 그때만 화가 안남 좋아서 마시는게...
-
잘생긴 사람이 너무 많은데 이게 맞냐 난 자살하러감 ㅂㅂ
-
올 수능부터 발표 당일날은 성적통지표 온라인으로 발급 가능 성적 증명서는 9일부터
가까운 쪽을 그린다고 했으니까 기준선을 그려야죠 ㅋ
그러다 보니 교점을 생각해보게 되고..
여담이지만 ㅋㅋ
저는 이문제 풀때 문제 읽다가 "~~~때문에 y=x 랑 접해야겠군" 이러고 푼게 아니라,
"혹시 y=x랑 접해야 하지지 않을까 ? " 라는 생각이 먼저 떠올랐어요.
그렇게 해서 답 구해보니 정답에 있길래 그냥 체크하고 넘어갔어요 ㅋㅋ
약간은 운에 의존한 감이죠 ㅋㅋ
네 님 잘못은 아닌데
이런 점 때문에 21번 문제가 좋은 문제 같지는 않아요
y=x랑 접해야 하는 이유에 대해서 치열하게 생각한거나
다른문제 신나게 풀고나서 '접하는거 아냐' 하고 푼거나 같은 결과를 얻는다는것이죠
작년 변곡점 문제 같은 경우 대충 생각하면 절대 답이 안나오는 문제였는데
비교적 이번 문제는 별로라는 생각이 드네요
저는 시간이 너무 촉박하길래 그정도도 아니고 아예 x가 음수일때는 생각조차 하지 않은 뒤 x가 양수일때 y=f(x)와 y=x가 한점에서 만나야겠다 해가지고 f(x)=x 식 세운 뒤 그래프로 풀었음.. 다행히도 답이 바로 나오더라구요 ㅋㅋㅋ
x축까지의 거리:lf(x)l, y축까지의 거리:lxl이고 y=f(x)니까 y=lxl를 그려보게 됨.
x축까지의 거리와 y축까지의 거리를 비교해야되니까 바로 y=x 그래프를 그려야겠다는 생각까지는 들었죠...그리고 f(x)를 그려보니 x가 음일때는 생각할 필요가 없다고 생각했고 x가 양일때를 생각해보니 '아, 접해야 되지 않을까??'라는 생각이 문득 들었어요...사실 이렇게 푸는게 올바로 푸는건 아니지만 접선에 방정식이라는 테마에 대해서는 평가원에서 지겹도록 반복해서 출제했기 때문에 이문제를 풀면서 이것도 분명히 접선문제라는 확신 아닌 확신이 들었죠...
사실 정당한 방법은 아니지만 이런 '확신 아닌 확신'이라도 얻기 위해서 기출문제 반복이 중요하지 않나 생각해봅니다....자기변명이죠ㅋㅋㅋㅋㅋ
lxl와 lf(x)l중에 더 큰 값이라고 했잖아요.
함수의 대소를 확실하게 , 쉽게 보여주는게 그래프니까 그래프 관점에서 접근했어요