왜 무리방정식의 실근이 실수평면 위의 교점이죠?
게시글 주소: https://a.orbi.kr/0003694010
왜 변수x의 무리방정식의 실근이
양변을 함수값으로 하는 두 함수의
실수평면 위의 교점의 x값이죠?
x+10 = 0
이라는 방정식을 풀 때
실근을 구하고 싶다면
실수평면위
y1 = x +10과
y2 = 0 의
교점의 x좌표 x= -10이 실근이겠죠
그런데
Root (x) + x + 10 = root(x) 라는
방정식의 실근을 구할때는
X=-10이라는
위 방정식을 만족하는 실근이 명백히 존재하지만
각 양변을 함숫값으로
하는 두 함수는 실수평면상에서
X가0이상일 때
정의되므로
실수평면에서의 두 함수는 교점을 갖지 않잖아요
그런데 왜 실근을 구할때
그래프의 교점만으로
전체 실근을 구했다고
어떻게 확신하죠?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적 93(27,29)틀 27푸는도중에 계산이 너무 빡세보여서 ㅅㅂ이거 에반데...
-
피오르 컨설팅 후기 22
제가 피오르 후기 찾아볼 때 개개인 오르비언들 쪽지로 추천은 많이 받아도 정작...
-
ㅆㅅㅌㅊ 이정도면 가성비 개꿀인듯 jmt,해모,킬캠,이로운,오르비 각종 모의고사...
-
혜윰모의고사 3
77점 언매 3개ㅜㅜ 그리고 혜윰모고가 지문은 쉬운데 선지판단이...
-
89점 받음 8번 뭔말인지 모르겠음 ㅋㅋ 21번 진짜 다 풀었는데 왜 케이스가 하나...
-
더프 후기 7
최저점 찍음 언 미 영 지1 생2 89 89 2 48 3x 아니 생2 내 주력과목인데 이게 맞냐
-
파급 물리 상세후기 입니다 사실 올린다고 한지가 너무 오래됐고 세네번은 말한것 같아...
-
[후기] 지인선 N제 38
좋은 N제를 무료 배포해 주셔서 매우 감사합니다! 오랜만에 수능을 봐서 수1,수2...
-
안녕하세요 Over.P 주벗입니다. 기출의 파급효과 물리1을 다 끝냈습니다. 책을...
-
ㄷㄱ 컨설팅 파콜 50
1월 x일에 상담받음 늦은 날짜라서 파이널콜 없을거라 함 여기서부터 좀 이상했지만...
-
"루트5 보면 무슨생각 들어? 평행이동 떠올려야지~ 연립하고 소거하면 답 나와~"...
-
얼마 남지 않은 덕코지만,,, 드리겠습니당 해설지는 작업 중에 있습니다...! 이번...
-
처음엔 일주일 수강권만 사서 들었는데 밀도가 높은 구성과 쌤의 강의력에 반해 총...
-
요약 : 팔 아픈 거 외엔 별거 없더라 고3이고 어제 오전 10시~2시 걸쳐서...
-
7모 끝난 기념으로 치킨 조지러 갔는데 이미 한국사 푸느라 푹 잤는데 2시간 동안...
-
13번에서 일단 막힘 15번에서 뭔가 이상함을 느끼기 시작함 17번 보고 조졌음을...
-
언매 + 문학 다 풀고 비문학 45분 정도 풀 시간 남길래 아 이거 평소대로 10...
-
2021년 7월 전국연합학력평가 대비 Last Pray 모의고사 후기 3
EASY한 독도바다입니다. 오늘은 마지막기도님께서 제작하신 2021년 7월...
-
안녕하세요, Live100입니다. 지난 시즌0 [수학, 100분이면 충분해] 수업을...
-
[주간 KISS] 내가 집에 가고 싶은 이유가 몬지 알아? 바로 영어와 KISS하기 위해서라구^-^ 10
내가 찾은 영어 1등급의 별⭐ KISS를 지금부터 소개합니다!(우와아아ㅏ) 1....
-
마지막기도님 동아시아사 1회 문제지 풀어봤습니다.(스포X) 18
어제 마지막기도님이 별 볼일 없는 제 세계사 모의고사를 풀어보시고 후기를...
-
늦어서 죄송합니닷!!!
-
사실 찐으로 시험 볼 땐 저런 잡생각 따위 안듭니다. 그냥 정신없이 문제를 풀뿐...ㅋㅋ
-
기출의 파급효과 후기 13
기출 파급 후기 (줄여서 기파급 후기) 안녕하세요. 아린입니다. 사실 귀찮아서...
-
이거 그릴려구 다시 문제 보니까 PTSD오네요ㅋㅋㅋ
-
노트펜도 없고 기술도 없어서 손그림으로 가는데 뭔가 허전한 것 같네용......
-
집공부 3일차 0
1. 파워스터디 최소 공부 시간이 9시간이라 어쩔 수 없이 해야 되서 1일차에는...
-
안녕하세요 한수 모의고사 특별판, 11회차 후기입니다. 특별판과 11회차가 같은...
-
내가 구매했던 파이워치 2.0 플래너는 좋은 점이 많았다. 디자인도 좋았지만 공부...
-
안녕하세요 한수 모의고사 파이널 9,10회차 후기입니다. 9회 작문에서 조금...
-
안녕하세요 한수 모의고사 파이널 7,8회차 후기입니다. 개인적으로 느낀 난이도는...
-
안녕하세요 한수 모의고사 파이널 5,6회차 후기입니다. 비문학이 확실히 까다로운데...
-
안녕하세요 한수 모의고사 파이널 3,4회차 후기입니다. 문법에서 중세국어 점점...
-
안녕하세요 한수 모의고사 파이널 1,2회차 후기입니다. 파이널 1,2회차는...
-
오늘은 사진을 못찍었습니다... ㅠ 84 3등급 한주에 하나씩 풀지만 따라잡기는 좀...
-
내가 구매했던 파이워치 2.0플래너는 좋은 점이 많았다. 디자인도 좋았지만 공부...
-
안녕하세요 한수 모의고사 5,6회차 후기입니다. 개인적으로 느낀 난이도는...
-
안녕하세용 저는 대성마이맥 소속이자 강대 강사이신 형수쌤의 많은 제자들 중 가장...
-
진짜 퀄 너무 좋았어요!!! 준킬러 문제들도 딱 작년 평가원 수준들로 이루어져...
-
역시 현주쌤의 시그니쳐 강의 거미손!!!! 교재 자체도 독학서로 좋기도 한데 전...
-
언박싱 거기다가 정성스런 손편지까지 ㅜㅜ 물론 인쇄본이지만 마음은 그대로...
-
'ㄹㅇ 자세한 후기'로 주간 Kiss 후기 썼는데 당첨되었네요ㅎㅎㅎ 스타벅스...
-
책의 구성은 1.지수함수와 로그함수(49문항) 2.삼각함수(29문항)...
-
20수능 보기까지 송영준T 현강 후기 (3등급->1등급) 17
사진 왼쪽부터 작년 수능 2006 2009 20수능 입니다 사실 작년 수능도 시험이...
-
현역으로 수능을 치뤘고, 유현주 선생님의 선착순 이벤트로 문법의 끝을 받게 되었음을...
-
그저께 일요일에 진행한 1주차 후기입니다. 쌤한테 후기 쓰겠다고 했는데 어쩌다보니...
-
헬스 후 바로 쓰는거라 정신없음 주의 핵심은 맨 아래 따로 정리해놓음 일단 특강...
-
12월의 어느날( 사실 너무 오래되서 몇일인지 기억이 안나요) 레드를 이용하기 위해...
-
안녕하세요 블록체인 글도 쓰다말고 술 글도 쓰다만 게으름벵이 개발자입니다....
-
(6월 1등급, 9월 1등급) 추천해주신대로 2회 3회를 풀어보았습니다 사실 학원에...
Root (x) + x + 10 = root(x) 에서 정의역을 따져보면 x가 음수일 수 없자나요
그래서 그림이 좌표평면에서 y축의 오른쪽에만 그려지죠
그럼 교점이 없으니까 실근도 없어영
X= -10 있다구요...
루트 안의 값이 음수면은 실수가 아니잖아요 그래서 x=-10은 위 식의 실근일 수 없다는 말이에요. Root(-10)이 실수가 아니니까요
실근이라는 것은 말그대로
실수인 근입니다
루트안의 식이 실수가 아니라고해서
X라는 근이 실수가 아니라는 법은 없죠
실수 범위에서는 루트 안의 숫자가 음수일 수 없기 때문에
애초에 저 방정식에서 x의 범위가 0 또는 양수로 한정되는 거에요
x에 -10을 넣으면 저 식이 성립하지만 -10은 고려 대상이 아님
실수평면위의 함수 즉,
함수의 치역이 실수라고 한정했기에
루트안이 음수가 아니라고 가정한것이지
그러한 가정이 없는
원래의 방정식에서는
애초에 한정된다는 등의 조건이 성립할 이유가 없습니다
두 함수를 좌표평면 위에 나타낸다고하면 그 말 자체가 두 함수식을 허수로 표현하지 않게하는 정의역을 설정한다는거 아닌가요?
네 그러므로 실수평면에서의
함수의 교점만으로는
모든 실근을 확인할수 없지않겠냐는것이
제 질문입니다
굳이 따지자면 그럴 수 있습니다만 고등학교 교육과정 내에서는 실수평면위의 두 함수의 교점만을 실근이라하죠. 근호안의 변수의 범위를 어디까지 확장하느냐에 따라 답은 달라진다고 봅니다.
고등학교 교과과정과 더불어 그 어느교과서에서도
실수평면 위의 두 함수의 교점을 실근이라고 정의하지않습니다
교과과정을 머리속에서 바꾸지마세요
방정식의 실근이란
해당 방정식을 만족시키는 근중에서
실수인 해를 뜻합니다
굳이따지자면이 아니라
수학은 엄밀해야합니다
허허.. 방정식이라면 글쓴분 말씀이 맞는데
님은 분명히 실수좌표계에서 말씀하셨기 때문에 그에 맞게 대답을 한겁니다.
좀 넘어가는 질문이긴한데
고교과정서 루트안의 값을
음이아닌 실수값만으로
한정하는 이유를
알려주시면
감사하겠습니다
실수평면 위의 두 함수의 교점을 실근이라고 정의하는것이 해석학의 근본입니다. 따로 정의할 필요가 없는 것이죠..
조금만 더 설명해주시면 감사하겠습니다
수학은 엄밀해야 한다고 말씀하셨는데. 공리의 옳고 그름을 수학의 범위내에서 판단할수 있나요? 실수좌표계를 도입한 데카르트에 따르면
아무리 복잡한 방정식이 주어져도 그들의 대수적/해석적 성질을 기하학적으로 설명할수 있다하였는데. 그것은 실수체계에 국한했던 것이죠..
실수좌표계와 복소함수 좌표계의 차이점에 대한 인식이 필요할것 같습니다. 문득.. 데카르트가 그제자들에 행했던 화법이생각나네요...
생각해보고 또 생각해보라.. 그래서 순수한너의 마음에서 우러나오는 생각이 옳다고 믿는다면 비로소 그때 받아들여라...ㅎ 너무 모호하고 관념적인가요?...
포카칩님의 답글을 추천합니다. 열심히 하시길...
실근이 실수인 근이고
허근은 허수인 근으로 좌표평면에
표현할 수 없습니다
-10은 무연근 아닌가요..?
무연근은 실근도 아니고 허근도 아닌
Extraneous 한 근입니다
제곱등의 연산과정에서 생기는
오류에서 생기는근이라고 보시면 됩니다
고등학교 1학년 무리식 교과 내용을 참고하겠습니다. (지학사)
http://cfile235.uf.daum.net/image/250EAF4751A9CB9A12C862
왜 이렇게 정의했냐고 물어본다면, 그것은 우리가 '그래프'라는 도구를 문제풀이에 '활용하고 싶어서' 그렇게 정의했다고 생각하는 것이 좋겠습니다.
이거면 납득하시겠네요.
저 "무리식의 값이 실수가 되려면"
이라는 말이 없다면
복소평면과 매개변수,
즉 실수부,허수부,매개변수
대략 3개의 축 이 있어야
일변수 방정식의
그래프의 교점만으로
모든 실근을 확인가능한가요?
두분 모두께 질문드립니다
네 저 부분이 무리식 설명 한쪽밖에 안되어있는데 그중 절반을 차지합니다.
그 설명의 결론을 확인해보면, 결국 교육과정상에서
'무리식으로 연산을 할 때에는 근호 안이 양수임을 전제로 한다'
라고 이야기할 수 있겠습니다.
하나만 더 질문드리겠습니다.
그럼 현재 수능출제 범위는 수1부터이므로
실수의 연산만 고려하고,
실근을 실수평면의 교점으로만
한정짓는지 궁금합니다
그러면 x^3=1의
근의개수를 3개라고 말하는지도
궁금합니다
실근이란, 좌표평면상에서 교점으로 해석해도 무방합니다.
무리방정식의 "실근"을 구하라고 정확하게 표현하여 출제합니다.
님이 말씀하신 내용의 무리방정식은 - 고교과정에서 무리방정식의 근의 범주에 애초에 들어가지 않습니다.
즉, 거두절미하고 무리식 정의내릴때, 근호 안이 양수인 부분만 생각하기로 했으므로,
Root (x) + x + 10 = root(x)
에서는 x≥0인 부분이 '논의 대상'입니다. x<0인 부분은 생각할 필요가 없습니다.
x= -1이 근이라고요? x= -1인 부분은 '무리식'이라고 정의하지 않아요. 근호 안이 허수인데 왜 무리식인가요?
i는 무리수입니까? 저같으면 차라리 허리방정식이라고 정의하겠네요.
수능출제범위는 수1~ 이지만, 통칭 고3까지 모든 커리큘럼을 밟았다고 가정하고 가정하여 출제합니다.
수능에 출제되는 내용영역은 수1~이고, 다루는 용어, 식은 초/중/고교 교육과정을 따릅니다.
x^3 = 1의 근의 개수는 3개입니다.
x^3 = 1의 실근의 개수는 1개입니다. 왜냐하면 좌표평면에서 만나는 점의 개수가 1개이기 때문입니다.
아 이제야
정의체계를
조금이나마 명확하게
알것같습니다
감사합니다
댓글이 안달리네요. 제가 알기론 고교교육과정내에 근호안의 값이 음의 실수도 가능하다고 알고있습니다. 단지 그것을 통칭 그래프로 나타낼때 문제가 되는 거죠. 저도 수험생인지라 잘 모르지만 추측컨대 일반 고등학생이 배우기에 현재 교육과정까지가 가장 적합하다고 판단한 것 같습니다. 복소좌표계까지 확장하는건 내용도 좀 방대하고 하니 대학과정으로 넘긴것같습니다.
굳굳 좋은 질문에 좋은 답변 ㅎㅎ 실근에 대한 정확한 정의를 하나 하나 알아가시는게 눈에 보기 죻네용