함수의정의?
게시글 주소: https://a.orbi.kr/0003694566
수학에서 함수의 정의가 x값에 y값이 각각대응되면 x,y가 함수관계라고알고있는데..
그러면 포물선 타원 원 이런건x값에 y값 2개가 대응되니까 함수가 아닌가요? 근데 어떻게함수만할수있는 미분,적분을 할수있는거죠?ㅠ 함수의 성질을 가지는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 여친 자리가 한명인건 말이 안됨 난 최소 3명은 사귀고 싶름
-
음.. 오르비에 너무 잘하는 분들 많아서 좀 귀여운 성적일지도 모르지만..? 그래두...
-
빵 4
폭
-
망했다는 입장은 그냥 들어가는 자원에 비해 결과값이 말아먹었으니까 정직하게 망했다...
-
아닌가
-
"제언" 이런 거 쓰면 좀 있어 보임
-
남매 있는 집안이면 알겠지만 그냥 누가 가식을 더 부리냐의 차이임
-
공대 희망합니다
-
1. 군법무관되기 2. 걍 빨리 갔다 오기
-
한마디
-
일단 성대 반영비 장난질에 다군 신설, 교차 지원, 연대와 한양대 역교차 명목상...
-
아기 현역 달린다.
-
1번은 다 풀고 2번 반 과탐 다 적긴 했는데 1/3은 틀린거 같아서 합격...
-
증원 숫자는 ㄹㅇ ㅂㅅ 맞긴함 49명 짜리 의대를 200명 한 번에 늘리는게 정상인가
-
이제 진짜 일본어 공부 열심히 해야겠어
-
그냥 유급만 안 당하고 저공비행 마려운데 저만 그런 거 아니죠..?
-
중대 상경 7
a가 자율적으로선택한정도 몇명 몇명 몇명 나라별로 제시됨 a값에 따라서 함수가...
-
지문 3개에 문제 7개 지문1은 대충 실험 설계와 데이터 분석 중력퍼텐셜 관련...
-
여초대학 장점 2
여자 환상 미친듯이 깨버림 못 볼걸 많이 봤어,,
-
스위치 나온지 거의 8년인데
-
마지막에 조건부 확률 안 쓰고 만족도 높으면서 m인 학생 확률만 구했는데 부분...
-
논술 70 내신 20 출결 10프로중 츌결 최고점-최하점이 10점-2점인데 예를들어...
-
직역별 약코하는분들은 사실 약코,징징댈 의도보다는 내가 들인 노력과, 이 지위를...
-
맨날 원 관련 도형 문제 내더니 왜 올해는 싹 다 미적분…. 시험지 받고 약간 당황햇음
-
우우 오쁘이 1
-
아 6
방금 일어났는데 하루 24시간씩 자고 싶다
-
아니 왜 1칸인교..
-
월스트리트 증권맨 보면 뽕차오르고 변호사 검사봐도 너무 멋짐 어뜨캄뇨
-
여친이나 좋아하는여자랑 전화할때 보통 통화 하루에 몇번 일주일에 몇번해? 그리고...
-
사랑의 바보 5
둘 다 일본 원곡을 갖다 쓴 거라 비슷비슷함
-
아 수능도 노답이고 딴것도 못보고...
-
지금 1년 질질 끌어서 쉬고 내년까지 쉴지도 모르는 상황이고 전망은 지금보다 안...
-
94 93 1 98 99로 제주대 약,수가 되나요?? 나머진 안되는데 텔그,고속...
-
대낮부터 ㅇㅈ 3
1분있다가 지울게요
-
한의사도 지방한 나왔다는 조건하에 한의사 >> 변호사임?
-
입결 어디 라인 예상?
-
집리트 ㄱㄱ 125이상 뜨면 리트로 가자 삼수까지가 나이 디메리트 안받는 마지노선임...
-
오르비에 글 써봤자 그 과 진로가 바뀔 만큼의 영향이 있나 5
그럼 같은 논리로 오르비에서 화학하지마라는 글이 자꾸 나오면 오르비의 굇수들이...
-
라고 오늘도 망상을
-
설공가고싶으셨대 새옹지마 그렇대요
-
친구 도벽 있는 거 잡아냄 ㅋㅋㅋㅋㅋㅋ 근데 걔는 중학교 때 들켜서 전교에 소문나서...
-
이대 0
이대 수리논술 휴바기 컷 높은 편인가요?
-
영어 한등급 차이로 누군 의대 가고 누군 약대 가네
-
1. 글쓴이가 의사다 2. 25의대 입시정원이 아직도 불확실할 수 있단 얘기를 한다...
-
수의대든 의대든 보내주세요
-
사회적으로 만연한 물질주의, 외모지상주의 풍조도 그런데서 기인한다고 봄 그렇게 다들...
-
보내주세요ㅠ
-
1.존예 옆집 누나 2.존예 여사친 3.친구의 존예누나 4.자주가는 곳 존예 알바생...
-
내꿈은뭘까 0
흠
포물선, 타원, 원 등은 함수가 아닙니다.
하지만 구간을 나누어보면 함수입니다.
예를 들어
x^2 +y^2 = 1이라는 원은
y=root(1-x^2)
y=-root(1-x^2)
이라는 두개의 함수의 합집합으로 표현할 수 있습니다.
따라서 각각을 따로 미분을 할 수 있다 생각하면 편하구요.
그리고 y= 로 표현되는 평소에 배우던 함수 들로 나누어서 표현할 수 있는 함수를 음함수라고 합니다.
즉, x^2+y^2=1 같은 함수는 음함수입니다. 여기서 따로따로 미분하지 않고 한번에 할 수 있는 방법으로 음함수의 미분법이라고 따로 배우는 것이지요.
자연수개의 엑스값에 하나의 와이값이 대응되는게 함수죠..
음 y축과 평행하게 선을 그어보면 원이나 포물선은 교점이 두개가 생기죠?
즉 하나의 엑스값에 두개 이상의 y값이 대응되는 경우라 함수가 아닙니다.
다시 설명하면, 하나의 엑스값은 하나의 와이값에만 대응될 수 있지만 하나의 와이값은 여러개의 엑스값에 대응됩니다. 전에 야매로 배울땐 x에서 y로 화살이 나가는데 화살이 둘로 쪼개지지 못한다고 배웠습니다.
(아 문돌이가 본능이라 글로만 설명하게 되네..ㅜ)
함수의 정의는 1.정의역의 원소는 모두 함수에 의해 대응이 되야 하며 2. 그 원소가 각각 하나의 치역에만 대응되어야 한다는 것.
하지만 원같은 경우는 정의역을 제한해서 1번 조건을 맞춘다고 해도 2번 조건에서 여지없이 탈락하죠. 따라서 원은 어떠한 경우라도 함수가 아닙니다. 하지만 원점을 중심으로하는 단위원에서 (0,1)에서 미분하라 했을때에는. 원을(0,1) 근방에서만 보면 함수의 성질을 만족합니다. 그래서 이런 경우를 두고 implicit fuction. ㅈ즉음함수라 합니다. Implicit는 영어로 감춰져 있다는 뜻이죠. 다시 말해 전체로 보면 절대 함수라 할 수 없지만, 미분을 정의할 수 있는 충분히 작은 부분만보면 함수라 할 수 있다는 거죠. 이것은 비단 원뿐만 아니라 우리가 좌표평면에서 그릴 수 있는 거의 모든 곡선은 음함수가 됩니다.