합성함수의 수학적 의미
게시글 주소: https://a.orbi.kr/00039941988
올해 수학 정도는 그냥 무지성으로 문제 풀어도 다 맞거나 하나 틀려서
무지성으로 풀다가 탁 막힌 문제가 하나 있는데
f(f(x))=f(x) 관한 문제 였는데
이 합성함수가 갖는 의미는 무엇인가요?
예를들어
f(g(x))=x 면 f,g 는 역함수 관계이다 이런거처럼 의미를 해석할수있나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
형님들 335 썼는데요.. ㅠㅠㅠ 다군 5~6칸짜리(마지막 5칸) 200명 넘게뽑는...
-
다썼다 0
언제발표나냐
-
얼버기 0
학교가야함
-
1,2등 메쟈의권 고득점자분이 과연 점공에 들어올까요 여기만큼 어이없는 곳도 없네요
-
자야지 1
자장가추천받아요
-
얼버기 3
1
-
헤으응 심심해 5
헤에
-
공부잘하고싶다 1
음
-
생존자있나 10
-
전자가 조금 더 선호도 높긴 한데 확률은 후자가 더 높으려나?
-
다군은 음 사실상 버리는 카드라 아무데나 쓸 것 같은데 어디쓸지 고민되네요 퉆해주시면 감사
-
같은 군에 하나만 써야하잖아요 그럼 가군에 하나 지원했으면 다른 가군학교는 자동으로...
-
재수하려고 합니다 국어는 모고만 한달에 한두번 풀어보고아무것도 안해도 1나오고 가끔...
-
두번째 사진도 반영해서 어림잡아 지원하나요?최종업뎃후 20명꼇는데 원래불합이였는데...
-
전남대 농대 인천대 공대 둘다 안정카드라 어디쓸지 고민입니다.. 전남대 간다면 공대...
-
원서접수완료 1
가나다군 합 3칸 지원완료
-
대깨설이고 서울대농대 썻는데 진학사 실지원보니 떨어진거 같아서 반수생각을...
-
중간공보다는 약간 낮게 느껴져서요
-
얼마나 가난해야함? 지균은 얼마나 시골이어야함?
-
상경대학 통합모집..신설이라 그런지 학교 홈페이지 찾아봐도 정보가 없네요...
-
미필 사수 어떻게 생각하세요? 삼수 개망해서 대학교 갈곳이 없어요 아직 군대도...
-
탐구는 사탐도 ㄱㅊ
-
아파.. 0
ㅎㅎ
-
대학 추합 0
210등중에 26n등인데 돌겠지 작년입결이없는 신생 + 추합 ㅈㄴ도는구간
-
글씨체 6
특이한 편인가요??
-
다 자나 인제 1
ㅇㅅㅇ
-
살짝 불안한데
-
오르비 내에서 몇명 쓰신 거일지 궁금하네여
-
성대 경영 11
나군에 서강대 경영이나 경제로 돌리는게 맞을까요?
-
업데이트 후로 등수 안 바뀐 거면 상향 카드 가능성 없음?
-
기출에 나온 것 같은데.. 그 남편이 외출하고 돌아올 때 가면을 안 벗는다? 근데...
-
대학가기 참 힘드네요
-
나 홍대 붙게ㅆㅂ 니들은 다서울대가라고
-
저는 하루종일 자기 밤새고 생활 불가..
-
중경외시가기 참 힘드네요
-
야동은 에드블로커가 제일 편하듯이
-
잠이 안오네요••
-
속썩이네 진짜
-
별하나가나를내려본다 이렇게 많은 사람중에 그별 하나를쳐다본다~아 아 밤이 깊을수록...
-
여보세요 0
여보안뒈~ 사랑해요
-
냥냥에리카냥냥 0
냥냥에리카짱냥냥
-
이글재밋네요 4
https://orbi.kr/00010082981 ㅋㅋㅋ
-
덕코가 많네 11
-
좋아 난 자겠어 7
외vs건 결과 나오면 깨워줘
-
우삼겹 콩나물 넣으면 존나 맛있음
-
동생이 이번에 수능을 봤는데 6모, 9모, 사설 모의고사 항상 국어 1~2등급...
-
그것만이 살길.
-
홍대는 이게 문제임 12
학교가 홍보에 전혀 관심이 없음 인스타 유튜브 다 방치 동국대맘 봐도 인스타 이쁘게...
-
서울대 6
진학사 점공 계속 최초합권이여서 1차는 그나마 안심하고 있었는데 지교 2.3:1에서...
코런건 없어용~
밑에식은 항등식이고 위에식은 방정식이에용~
방정식인건아는데 그 근이 갖는 특징 예를들어 f(a)=a 이면 성립하듯
f(x)=x 위의점 이거나 또는 ~~~ 이랗게 특징을 물어본가에여
f(x)=u로 치환하면 f(u)=u를 만족시키는 u에 대해 f(x)=u인 모든 x가 근이지요
위에가 항등식일경우 증가하는연속함수는 저항등식을 만족하는 함수가y=x뿐이고
감소하는연속함수는 f가무수히많은데 이함수들은 전부 자기자신이 y=x대칭함수입니다
방정식일경우 치환후 진행
걍치환 ㄱ
f(f(x))=f(x)가 방정식을 말씀하시는 거면
두 함수 y=x, y=f(x)가 만나는 x에 대해서 대입해서 식의 값이 f(x)가 되는 다른 근도 방정식의 근이 됩니다.
모든 실수 x에 대해서 위의 조건이 성립하고, f(x)가 역함수가 있다면 f(x)=x 입니다.
역함수가 없다면 그냥 조건 그대로인 함수 입니다.
역함수가있다고 y=x로 단정지을수없지않음?
증가하는함수여야될텐데
왜요 그냥 양변에 f inverse 합성하면 되는데
천잰가
까마득히옛날에 한기억이왜곡된듯
역함수는 일대일함수가 전제조건이라 역함수라 할 수는 없습니다만, 증가구간과 감소구간으로 흐름을 분리해서 보면 각각을 역함수관계로 해석해서 근을 구할 수 있습니다.