미적분 ep1. 미분없이 그래프 개형 그리기
게시글 주소: https://a.orbi.kr/00056501135
미적분 ep1. 미분없이 그래프 개형 그리기.pdf
'미분없이 그래프 개형 그리기'와 관련된 자료입니다.
팔로우와 좋아요는 항상 감사합니다.
안녕하세요. 파급효과입니다. 다들 중간고사는 잘 보셨나요?
저번에 소개한 주제는 '수1 ep1. 왜 라디안을 쓸까? (노베용)'이었습니다.
오늘은 미적분 선택자들을 위하여 준킬러를 잡기 위한 첫 단계인
'미분없이 그래프 개형 그리기'를 소개할까 합니다.
수2가 왜 미적분보다 쉽게 느껴질까요?
아마 다항함수 그래프 개형을 파악하기 쉽기 때문일겁니다.
미적분도 미분없이 그래프 개형을 미리 빠르게 파악할 수 있다면 좀 더 쉬워지지 않을까요?
수능에 주로 나오는 초월함수 정도는
실제로 미분없이 그래프 개형을 빠르게 파악하는 것이 가능합니다.
아래의 5 STEP을 순서대로만 지키면 끝입니다.
초월함수 y=f(x)를 미분없이 그래프 개형으로 그려본다고 합시다.
1. 우함수나 기함수인가?
2. x가 무한으로 갈 때 어디로 가는가? x가 –무한으로 갈 때 어디로 가는가?
3. x=a에서 y=f(x)가 수직 점근선을 갖는다면 이 근처에서는 어디로 가는가?
4. x축과의 교점은 몇 개인가?
5. 위 4가지를 고려하면 직관적으로 그래프 개형을 예상가능합니다.
간단하죠? 그런데 그래프가 없고 말로만 하니 이해가 잘 안가나요?
자료에 모두 담겨져 있으니 확인해보시면 될 듯합니다.
이것만 잘 익히셔도 미적분의 절반은 해내신겁니다.
해당 자료는 기출 파급 미적분 chapter 4의 일부분을 담았습니다.
이 자료를 통해 미적분 준킬러 문제 풀이 접근이 훨씬 쉬워지길 기원합니다.
더 자주 자료와 찾아 뵙겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
집 근처에 (목동,강남권x) 꽤나 지점 많은 브랜드의 관리형 스카 새로운 지점...
-
고3때 갑자기 사탐 선택한 애들 이과 350명인 학교에서 다들 하남자라고 비웃었지만...
-
중시경건 0
마음이 따뜻해지고 경건해지는 참 좋은 말이다
-
근데 점공이 2
한꺼번에 몇명 들어왔다가 또 하루종일 정체네요.. 이제 진짜 쓸 사람들 다 쓴건가
-
재밌군
-
해볼까 Yoon's 가르칠순 있는데 가르쳐도 되나?
-
1과목 실수들(원장연이라는 나쁜말은 ㄴㄴㄴ) 다 투로 가거나 사탐런치는게 지금...
-
1. ∃원인∀결과(원인→결과) : "모든 결과를 일으키는 어떤 원인이 존재한다."...
-
잇올 6시 오픈하자마자 1등으로 입실하던 시기와 무단지각으로 벌점 60점 쌓은...
-
ㅈㄱㄴ
-
시급 만원에 할 수 잇구요 신촌 쪽에서 30분거리에 허수친구면 좋구요 제가 오르비...
-
문명6 0
오랜만에 해볼까
-
"사회복지학과 지망생" 사복과 출신 반수생: STAY...
-
뜌따이 되는거같노 .....
-
네
-
3년동안 한시에 자고 6시반에 일어났는데 대학와서는 한시에 자면 9시 돼야 일어나는듯
-
햄버거는 아직 무리인가봐요
-
CC는 뚫으면 되는거잖아?
-
여붕이내놔 7
여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔...
-
이정도 표본유입으로도 이렇게 정상화시켰는데 분위기,기본인원수보면 유입량 최소n배증간데과연,
-
난 오르비하려고 수면 시간 줄이긴 함
-
수능 컨설팅 받을려면 어디 학원가서 받는게 제일 좋을까? 1
나름 유명한 큰데 기준으로 말하는거 ㅇㅇ 자기 자신의 위치, 앞으로의 전망, 발전...
-
내신영어 의문점 3
내가 내신 버린 이유가 영어 이년때문임 고1때 지문 풀암기로 존나 빡공할때도...
-
세특은 정상임 그래서 bb일 듯 반박시 니말이 틀림 제발
-
과탐2에서 과탐1오는걸 원런이라고 부름? 아니잖아 그냥 사탐이 당연한거고 과거...
-
필수본 교재없이 0
인강만 들으면 안되나? 완자 이미 있는데 사야하나?
-
자유대한~~~ 0
그냥 갑자기 써봄...
-
U치환 0
행복 유치환 사랑하는 것은 사랑을 받느니보다 행복하나니라 오늘도 나는 에메랄드 빛...
-
기하 과외 구합니다 17
각각 22 23 25수능 22번틀 100점 22번틀입니다 시급2 대학 성균관대...
-
여캐일러 투척 17
이거나 올려야지
-
물1 왜 버림? 4
안 씻기만 해도 되는 과목인데
-
커하 4
교육청 76 99 2 99 98ㅠ 역시 오르비라 그런가 다들 너무 고능함...
-
ㅋㅋ 1
ㅋ
-
사탐런 X 자기객관화 상황판단력 GOAT 사탐개척임
-
사탐런 생윤사문하는데 생윤 개념강의 들을 땐 다 잘 이해하고 잘 외웠는데 기출가니깐...
-
예비고3이고 겨울방학 때 지구 공부를 다 끝내야하나요 작년지구 내신다1맞긴했는데...
-
와 진짜 맛있다 5
이 가격에 이 정도 맛은 얘 말고는 찾기 힘든 듯
-
고려대 교과우수 2
교과 성적 잘못 입력하고 진학사 들어오는 사람 많을까요??
-
분노는 나의 힘 2
으으으으으으으
-
무등비 삼도극 빠지니까 오히려 더 어려워진거 같은
-
사탐에서 경제느낌인가 둘다 냄새는 뭔가 비슷할거같애
-
1로 맞춰놓고 원서 넣으면 ㅈ간지나잖아ㅋ
-
생윤 커하 커로 5
커로 98 (만점) 커하 100
-
수학 허수 특징 3
241119 틀림
-
거의 다 들어왔다고 봐도 되나
-
첫 풀이 2000덕 드리겠습니다! (+자작 아닙니당)
알고싶던 내용인데 감사합니다
개인적으로 미적분 노베일때 전자책으로 보고 가장 도움 됐었던파트에요
좋은 자료 감사합니다
오랜만에 들어왔는데 메인에 있구만
잘 지내죠?
과급효파! 과급효파!
파급효과 생명 하 언제쯤 출시되요?
3주 정도 후에 출시된다고 생각하시면 될 것 같습니다
칼럼 정말 잘 읽었습니다!
궁금한 점이 있는데
저 칼럼에 삼각함수가 곱해진 꼴은 없더라구요
삼각함수가 곱해진건 그냥 미분해서 개형 파악하는 수 밖에 없나요??
주기성을 중점적으로 보면 됩니다.
그 외적인 것은 아무래도 미분해서 파악하는 것이 정확합니다
답변 감사드립니다 :)