수학적인 영감 떠오름
게시글 주소: https://a.orbi.kr/00057613985
매개 변수에 관한건데, 보통 2차원 좌표평면에 그래프를 표현해야만 한다는 생각들을 하겠지만, x=t에 대한 함수, y=t에 대한 함수 이런 두개의 관계식이 있을때, t축을 xy 평면의 원점을 지나게 수직으로 도입하여 3차원의 공간을 만들어서 거기에 점들을 찍으면, 뭔가 2차원에서 ㅈ같이 표현되던게, 3차원에서 명확하게 드러날 '가능성'이 있다는 생각을 함. 예를 들면 원이 xy 평면에서는 그냥 동그란 원이겠지만, t축을 도입했을 때 마치 감자 꽈배기? 그런 모양으로 드러날 가능성도 있다는 거지. 물론 우리가 시각적으로 어떤 자료를 보고 이해할 수 있는 차원의 한계는 3차원적인 공간이 끝이겠지만, (3d는 생각할 수 있어도, 4차원은 생각 못하잖아. 그거 말하는 거야.) 그럼에도 불구하고 우리가 10차원, 100차원의 공간을 이해할 수 있다고 재밌는 하나의 상상을 해본다면, 좀 더 simplify의 가능성이 커지지 않을까?
그리고 좀 더 이 해석을 확장해본다면, 이건 언제까지나 유추에 불과하지만, 마치 2차원 평면에서 3차원 공간으로 사고의 틀을 확장했을 때, (그래프 차원에서)좀 더 본질에 대한 이해를 하기가 용이해지고, 쉬워진다는 사실로부터, 더 높은 차원에 대한 이해도가 직접적이진 않더라도, 간접적으로나마 함양된다면, 더 큰... 사고의 도약이 가능해지진 않을까? (2차원에서 보든 3차원에서 보든 4차원에서 보든 탐구 대상의 본질이 바뀔 것이라는 말은 아닌데, 3차원을 통해 보는 것이 더 쉽게 본질에 대한 이해를 시켜줌으로써 본질에 대한 접근을 2차원일 때에 비해 용이하게 만들어준 것처럼, 차원이 높아지면 이에 따른 탐구의 용이성, 노력의 필요성의 줄어듦 같은 효과에 의해 더 높은 수준의 이해까지 나아갈 수 있는 계기를 마련해 줄 수 있을 것 같다는 말임. )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 갑니다 1
-
그냥 그런생각이 듬
-
떨치고 자야지 4
-
??
-
난 친구가 없어 2
흑흑
-
서울대, 한양대는 학종 정성평가라 검1고생은 나가리고 고려대, 연세대는 정량평가라 쓰여있네
-
결혼하고싶다 와이프한테 이것저것 요리만들어서 먹이고싶다 앞치마 두르고 요리하고...
-
다들 잘자요 4
헤헤헤
-
오야스미 0
네루!
-
어디로 가야하나요 입결로 따지면 숭실이 압승인것같긴한데 광운대 전자가 아웃풋으로 좀 유명해서...
-
자라. 캬캬. 2
내일 1교시라 자러 갑니다 편안한 밤 되십쇼 오르비 소등하겠슴다
-
스플랑크니조마이 :) 슈퍼초대박날거야 :)
-
ㅈㄱㄴ
-
연애를못해서 안에서썩어문드러지는중임 근데 나를 젛아해주는여자가엊어
-
안 자는 사람? 6
-
ㅈㄱㄴ 일단 스카이는 다 보고
-
05형님들이 수능보고나서 11월말쯤에 같은 반애들끼리 이제 정시 시작이라고 같이...
-
수시 서울대학교 의예과 학생부종합전형 합격 연세대학교 의예과 논술전형 합격...
-
수능끝난날부터 아침저녁 신경안쓰고 무지성으로 깰때까지 수면, 배고플때 밥,...
-
따뜻한 물에 삶아지는중 노곤노곤
-
효용이 없다 이런걸 말하려는건 아니고 읽는걸 잘 못하는 사람이 읽는법을 읽어서...
-
인강 완전 대체로 독학서느낌? 같긴한데
-
사탐신규커리 0
보통 언제나옴?? 정법이랑 생윤 할 거 같음
-
뭔가 좀 아쉽네 지구1
-
무지성 토익 신청함 14
걍 가면 몇 점 나옴?
-
아예 균형을 잃는 것도 하나의 방법일 수 있음. 균형을 잃고 거기서 추진력을 얻어서...
-
우울증 학교부적응 내신망함 자퇴욕구MAX 수능노베 이거 수능 뽀록나서 대학 잘가는게...
-
저들이 나와같은 인간이라는게 믿기지않는 압도적으로 똑똑하거나 성실하거나 아름답거나...
-
흐어
-
비문학 독해 연습 드가자...
-
가슴 한 켠에 증오 대신 문학을 담고 오늘의 끼니보다 내일의 희망을 노래하는 사람이 되고 싶어요
-
국어 공통 김승리 풀 커리 언매 유대종 수학 예체능이라 X 영어 션티 or 이명학...
-
남초 입시커뮤에 왜 여시충 아줌마가 와서 여대관련 이슈만 보이면 아득바득 달려와서...
-
앞으로 데이터사이언스, 데이터분석 관련 직군이 더욱 늘어날거라 미래에 배팅한다고...
-
수능에선 걍 잘풀고 답맞추면 장땡이지 수험생입장에서 강사가 출제자의도를 보여주니...
-
두 문제 틀렸는데 그럴수도 있음?
-
1. 의사 면허가 모든 것을 책임져주는 시대는 언젠간 반드시 사라질 것 같다....
-
경제하다와서보면얘는ㄹㅇ..
-
올해 지구 1
50 50 47인데 과외 경쟁력있음? 근데 이제 수능찍맞n개를 곁들인 ㅋㅋ
-
머가 더 지금시기에 와닿음?
-
ㅇㅈ 2
ㅇ
-
안녕하세요 사탐,과탐 둘 다 노베이고 어느것을 할까요? 미리 경험하신 분들께 조언...
-
님들이 저라면 자퇴함? 11
2-1까지 성적 1.64 근데 이번 중간고사 3.33 맞아서 총합 2점대 오픈함...
-
기출 푸는데 갑자기 미적기하 선택에서 그런거 없어지고 기하랑 다 들어있길래 뭐지...
-
신선하다는 의견을 많이 봤는데… 그냥 사설에서 나오는 유형 아님??
-
말 되나요ㅠㅠ
-
수학 잘하려면 2
수학 개념을 다 익히고 문제푸는거에요 아니면 개념 보고 바로 문제를 풀어서 개념을...
-
시험장에서 공통 은 잊어버렷는데 미적이 존나 어려웟어서
너무 대충 써서 정리가 잘 안됨
x=f(t)에서 y좌표는 어떡하나요 그럼
... 뭐 그건... 알아서 잘 엮여 있겠죠
(f(t),g(t),t)를 만족하는...
근데 원이 ㅈ같으신가요
ㅋㅋ 아 그 ㅈ같음을 이해시키려 했다면 제 머릿속에 있던 사고과정에 쓰인 전제를 다 썼어야 했는데 그러질 못했네요.. 너무 대충 써서 ㅋㅋ...
저게 그거 잖아요 작년 6평 가나 지문 중에 (가)지문
? 아닌데요
맞음
‘날아가는 야구공은 물론이고 땅에 멈추어 있는 공도 시간은 흘러가고 있기에 시공간적 궤적을 그리고 있다.’
t는 시간이 아니라 변수입니다. 님은 수능 국어 공부하는 시간을 좀 줄여야할듯. 너무 많이 보셔서 그냥 사고가 그 내용쪽으로 굳어진게 아닌지... 기분 나쁘게 생각하지 마시고 진지하게 생각해보셔야 할 듯? 그리고 본인이 틀렸을 수 있다는 생각도 해보시고...
저 표현 자체가 R^3에서는 점으로 표현된 것이더라도 R^3 X T에선 점이 아닌 직선이 될 수도 있다는 걸 의미하는 건데 T가 시간의 집합이 아니므로 다른 것이다 ㅋㅋㅋ…
국어 공부 하루에 1시간밖에 안하니깐 걱정은 안하셔도 될 것 같습니다.
초딩이 등차수열 합 생각해내고 자신이 대단한 발견을 하였다고 우쭐해하는 모습을 보는 것 같아서 댓글 달았는데, 본인이 말씀하신 대로 국어를 못하셔서 그런지 이해를 잘 못하신 것 같아요.
수학 잘하시고 자부심도 나름 갖고 계신 거 같은데, 너무 거기에 도취되신 게 아닌가 싶습니다.
ㅋㅋㅋ 발악하는게 귀엽노
네 틀린 말이 없어서 더이상 반박 못하시겠다는 뜻으로 받아들일게요 극찬 감사합니다
어느 측면에서 아닌지 설명해주시면 생각해보겠습니다
데이터 분석같은거 할때 쓰지않나
특성을 잘드러내는 변수를 찾는 원리?
뭐라해야하지
음... 그냥 생각나는대로 쓴거라 ㅋㅋ..
실제 미분기하학에서 사용하는 방식과 유사하네요! 좋은 아이디어입니다.
와우.. 전문가분한테 칭찬 받으니까 기모찌하네요 ㄷㄷ...
말씀하신내용을 간단하게 요약해보자면 2D의 어떤 도형이 사실은 3D에서 정사형시킨 도형이다 라는 생각을 하신것 같아요. 이런 아이디어에서 3D 스캐너같은게 나올수있었다고 생각합니다. 더 많은 아이디어로 세상을 밝혀주세요
어려워서 안쓰는게 클듯
오 저랑 굉장히 유사한 생각을..