[어려움] 미적분 자작문제
게시글 주소: https://a.orbi.kr/00058196908
직선 및 곡선 에 의해 둘러싸인 영역 중 보다 위에 있는 영역의 넓이를 라 하자.
의 값을 구하여라. [4 점]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언제인가요?
-
운동8일차 0
러닝50분 홈트?근력?40분? 저녁 샐러드 달걀 단백질쉐이크 담주부터 헬스장으로...
-
깜빡이 좀 켜라 평화로에서 좀 천천히 가지 말고 제발
-
혀 클리 너 1
히히
-
방구뽕 4
-
= 높은 확률로 여자임
-
궁금합니다 반대하는지 찬성하는지 입학처가
-
국어 8등급인데 2
슈냥방송보면 5등급 가능할까요?
-
반갑습니다. 7
-
학과 선택 꿀팁 0
1. 다른 라인에서는 학교 이름이 먼저다 2. 같은 라인에서는 학과보고 선택하라...
-
보지 말라고요
-
열심히 한다는 기준하에 고2 수학 1~2
-
12시도 안 됐는데,, 에잉 쯧,,
-
12월 24일~26일 : 숙면 12월 31일~1월 1일 : 폭주
-
확통하는게 맞을까요 미적하는게맞응까요 지망하는 학교는 공대 수학 선택에 가산 없어서...
-
수리논술학원 7
추천부탁해용
-
계실까요? 궁금한거 좀 여쭤보고싶어서요..
-
초딩 때 한자 3급 딸깍하고 땄는데 지금은 걍 금붕어 머리임
-
ㄹㅇ찍신도 안도와줌ㅋㅋ
-
이제 곧 12시 돼서 나흘째 되자마자 하려구요
-
하.. 첫날엔 98이였는데 ㅋㅋ
-
부산대 지역 면접 안가도 될까요…? 그리고 이 점수면 혹시 인설의도 가능할까요?...
-
피자병 언제 낫냐고 먹은지 이틀만 되면 피자가 너무 먹고 싶어지는 심각한 병임...
-
화작 89 5
이거 백분위 89는 안나오겟죠?
-
기존에 내신하면서 다닌 학원을 정시준비하는데 다녀야할까요 정시준비 도와주신다고...
-
오늘엽떡 4
반반시켜서 한통거의다먹음 오랜만에 시켰더니 맛있노 엽떡
-
매워도 됨 ㅇㅇ
-
(칼럼)쌩노베가 최소한의 노력으로 한문 3등급 받는 법 4
일단 제가 얼마나 노베였냐면요 중학생 때 준7급(그냥 7급도 아님) 딴 게 한문...
-
매새가 매워요...
-
흐으음
-
어땠나요 전 마이클리 백형훈 페어로 관극 예정
-
무슨 과자 먹을까여
-
헤어디자이너 쌤이 오늘까지 감지 말랬어요.
-
믿말언제옴 1
뻘글없으니까 심심하네
-
엄마 왈 13
나보고 냄새난다하심... 어젯밤에 머리감았는데 방에서 누린내가 난다나...
-
점 빼야하는데 0
제모하는김에 같이할걸그랫나
-
과 어떻게 감?
-
본인이 결백함을 꾸준히 증명해야 할듯
-
확통96 1
2뜨는 가능세계있음?
-
올해 목표 6
취해서 필름 끊길 때까지 마셔보기
-
그래서 어쩔수없이마심 아님너무불안함
-
이제늅이가아냐
-
모여랏
-
고2의 고민 0
일반고 내신 2.5 이과 공대 희망중 교과로 갈 생각인데.. 최저 2합 5,6 3합...
-
대성 언매 추천 1
언매 개념강의 추천해주세요 유대종? 김승리?
-
은 아니지만 제 진짜 생일이 다음주에 있답니다 후후
-
있나요 ?
-
술 뚫는법 15
없나요 태어나서 한번도 안마셔봤는데 12월에 결과가 다 떨어지면 집에서 술이나 맨날...
1?
아뇨... 그럴 리가 있겠습니까. 다시 해보세요. 깜빡하고 안 적었는데, 답은 유리수 꼴입니다.
ㅋㅋㅋ 찍었어요
음함수인거 같은데 버스라 못풀겠네요..
교점 x좌표 t로 두고 치면 될 것 같은데 걷는 중이라 암산이 안되네요 ㅋㅋㅋ
답이 기대되는군요
아까는 k->0+을 k->inf로 생각해서 0<x<pi/2에서만 교점을 갖는구나~ 하고 좋아했는데 집 와서 다시 보니까 교점이 무한히 많아지는 상황이었군요... alpha(1)=0이라 할 때 순서대로 교점을 alpha(1), beta(1), alpha(2), beta(2), ..., alpha(n), beta(n)으로 둘 때 모든 자연수 n에 대해 k=sin[alpha(n)]/alpha(n)=sin[beta(n)]/beta(n)이라는 관계식을 만족하는 상황에서 A(k)= sigma [ integrate [sin(x)-kx] dx from alpha(n) to beta(n) ] n=1 to inf 라는 급수를 k에 대해 나타내야겠네요. 아직까지는 A(k)가 k에 대한 다항함수와 삼각함수로 이루어진 함수로 나올 것 같진 않고 (2n+1/2)pi<beta(n+1)<(2n+1)pi, 2npi<alpha(n+1)<(2n+1/2)pi를 이용해서 샌드위치 정리를 같이 활용해야 답을 구할 수 있을 것 같은데... 더 고민해보겠습니다 ㅠㅠ
현재까지의 상황은 이러합니다. 조금 더 고민해볼게요!
1. k->0+에서 y=sin(x)와 y=kx의 교점은 무수히 많음. 수열의 합의 극한으로 표현하기 위해 x=0부터 교점을 작은 수부터 크기 순으로 a(1), b(1), a(2), b(2), ..., a(n), b(n)이라고 명명.
2. 구하고자 하는 값은 lim n->inf [ sigma i=1 to n [ integrate [sin(x)-kx] dx from a(i) to b(i) ] ]
3. k=sin(a(i))/a(i)=sin(b(i))/b(i) 임을 알고 cos(a(i))+1/2k(a(i))^2-cos(b(i))-1/2k(b(i))^2 을 k에 관해 나타내어야 A(k)를 k에 대해 표현할 수 있음.
4. 추가로 아는 것은 a(i)와 b(i)의 i에 따른 범위. k->0+이면 n->inf고 b(i)-a(i)~pi인 점 등
1/pi ?
다시 해보시죠!
1/2pi 나왔습니다.
안타깝네요! 아닙니다...
1/4pi. 아니면 자러갑니다. ㅜㅜ
아닙니다! 유리수 꼴입니다
1/2. gg하겠습니다. ㅠㅠ 문제 잘 풀었습니다. 저는 이만..