확률 문제 질문드립니다
게시글 주소: https://a.orbi.kr/0006132247
[1 2 3 4 5 6 '7 7' 8 9 10 ] 이렇게 11장의 카드중에서 3장을 꺼낼 때 가장 큰 수가 7일 확률은?
학교에서 선생님이 내주셨는데
(7C2/11C3)x1/2 이렇게 식 세워 풀어서
7/55 가 나왔는데 어떻게 틀린거고
올바른 풀이가 어떻게 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전부 발바닥 아니면 유우카 야짤이라...
-
치대한의대교과 나오기 전까진 진심 아무것도 못하겠다 0
아 진짜 미치겠다 부모님도 조마조마하고 난리남
-
아침 간계밥 점심 부대찌개 저녁 샐러드 달걀1개 미니고구마1개 단백질쉐이크...
-
가채점표랑 기억이랑 엇갈리는게 3갠데 맞길 기도중 하루하루가 개쫄림
-
제시문면접은 0
준비를 어떻게 해야하는거지 짜증나
-
할머니 사진좀 찍어둘걸.. 이젠 찍고 싶어도 찍을수가 없구만..
-
이거 둘이 케미 좋나요?
-
내가 선택한 조건이 맞는 조건이면 쭉 풀리는데 내가 선택한 조건이 잘못된 조건이면...
-
성적표 마킹이 잘못된건 아닐지 표점이 떡락하거나 등급컷이 오르지는 않을지.....
-
가족이라는 사람들도 너무 싫고 그냥 세상을 떠나고싶다
-
분명 알림까지 떴는데 댓글이 없어 ㄷ ㄷ 삭제된 것도 아님
-
역함수라고 뭉뚱그려 해석할수도 있지만 엄밀하게 생각해보면 그렇지 않았던 문제 무말인지 아시는분
-
의료계열(의사 간호사 약대) 지망생 진로 코치 강의 - 부탁으로 올림. 0
안녕하세요. 건강행복의료회입니다. 우리 의료회는 [지역 의료봉사/학술대회/의료계열...
-
ㅋㅋㅋ
-
여자친구 ㅇㅈ 7
-
취업 때문이라도 이과 가야하나?? 물1 중딩때 하긴 했는데 머리 쥐어뜯었던 경험이..
-
제가 본 데이터들을 바탕으로 보면 NT 성향이 있는 친구들은 대부분 국어를 공부를...
-
어렵게 내려고 하면 걍 한도 끝도 없음 답이 없더라
-
내가 할지 안할지 선택권이 있는지부터 물어봐야 되는거 아니냐?
-
하 뭐하냐
-
부모님이 굉장히 좋아하셨다. 목구멍이 뜨겁다. 혼자서 거의 250ml 정도 마셨는데...
-
카1지노, 코인대박 광고면 양반이지 이젠 체위레슨 이딴거도 뜸 광고 안거르고 그냥 받나
-
현역때 공부 많이 안 해서 4년제 다 떨어지고 전문대와서 1학기다니고 휴학한 뒤...
-
당신의 선택은?
-
문과계열에 사탐 가산점도 같이 주는거죠? 사탐 가산은 없고 공대에 과탐 가산점만 있는 학교가 있나
-
물리내신범위 2~3단원,모고변형이고 프솔한바퀴 돌렸는데 기출픽같은거 풀면서...
-
그게 내가될줄 몰랐네
-
ㅇㅇ
-
고민상담 3
건국대 전전 2학년까지 마치고 군대가서 군수보고 전역한지 얼마 안 됐는데 이번에...
-
과탐보다도 어려웠던거임?
-
선착순 10명 5
뭐?!
-
집에 가면 따땃하게 뎁힌 침대위에서 이불 돌돌 말고 그 위를 굼벵이마냥 굴러주겠어 히힣
-
자기 전 질받 13
궁금하신 점 물어보셔용
-
전제 미적 확통 개념 싹 다 알고 3점짜리 다 맞힐 베이스는 있음 4점짜리도 사실...
-
최저 많이 맞췄으면 작년 대비 그렇게까지 안떨어질 것 같은데 어디서 형성될라나요...??
-
궁금함
-
시발 저 탈래요
-
백분위 기준 언매:93 미적:86 영어:3 한지:96 사문:91 과 상관 없이...
-
신검 얼마나걸림 5
내일 신검받는데. . .
-
재수 3
지금 수능도 못쳐서 기분 더럽게 ott나 보고있는데 올해 공부 했던거 까먹기 전에...
-
안녕하세요 최근에 군수 시작하게 된 상병짬찌입니다 2년만에 보는 수능이라 요새...
-
이것이 행복!!!
-
학교만 봄
-
쿼티햄 보고싶다 17
돌아와요
-
키르아나 보고가십쇼 간만에 헌터헌터 정주행 마렵네
-
처음으로 시험에서 가계도를 풀어내는 쾌감이 너무 행복했음 그리고 그게 이번 수능이었음
-
요즘들어 자꾸 권위를 넘보려하네
-
제발요....
-
스케일 주의!! 6
스케일주의스케일주의스케일주의 스케일주의스케일주의스케일주의 스케일주의스케일주의스케일주의
-
개노잼임
14/55 맞나요?? 불안하네요 ㅠㅠ
먼저 8,9,10은 7보다 크니까 제가 원하는 배열에 포함되면 안되겠네요. 가장 큰 수가 7이어야 하니까 1~6은 막들어가도 상관없고, 7이 꼭 포함되어야겠네요.
저는 7 두개를 서로 다른 것이라 인정하고, 네모 세개그려서 풀었어요
ㅁㅁㅁ 여기서 7을 고정으로 선택하고 다같이 나열하면 되니까
7ㅁㅁ, ㅁ7ㅁ, ㅁㅁ7 모두 동일하니까 먼저 3
나머지 두칸에 7개의 숫자를 배열하는 가짓 수 7*6
그리고 7이 두개이니까 바꿔서 다시 2
그래서 2*3*7*6/11*10*9(11P3) 하면 14/55가 나와요
만약 조합을 이용해서 푼다면..
ㅁㅁㅁ 여기서 배열 가능한 가짓수는 11C3이고요
7을 하나 박아놓고 두칸을 채우면 되니까 7C2가 나오고, 7이 두개니까 2*7C2네요
그러면 확률은 2*3*7/3*5*11 똑같이 14/55가 나와요
맞나 모르겠네요 ㅠㅠ
밑에님 댓글보니까 제가 식을 잘못세웠네요.. 2*7C2로 하면 3개중에 7이 두개들어갔을때 7끼리 바꿔도 똑같으니 잘못된거네요 ㅜㅜ 밑에분 풀이가 가장 깔끔한거같고 ㅁ77일때 6C1, ㅁㅁ7일때 ㅁㅁ에 6개중에 2개 선택하니 6C2, 7끼리 바꿀 수 있으니까 2*6C2+6C1, 66이고 전체가 11C3이니 12/55네요 ㅜㅜ 박수칠님 감사합니다!!
네~ ^^
아아 그래서 2*7C2 가 안되는군요! 아랫분 풀이보고 이것처럼 식세워 봤는데 왜 안되나 고민했어요 ㅋㅋ
수학적 확률을 적용하기 위한 전제조건은
(1) 각 근원사건이 동시에 일어날 수 없다.
(2) 각 근원사건이 일어날 가능성은 같아야 한다.
입니다.
여기서 (2)에 부합하려면 7이 써진 2장의 카드가
서로 구별이 안됨에도 불구하고 서로 다른 카드로 취급해야 합니다.
그래서 두 장의 7을 7'과 7"으로 구별하면 근원사건 { 1-2-3 }, {1-2-7'}, {1-2-7"}이
나올 가능성이 같아지면서 수학적 확률을 적용할 수 있게 되죠.
다음으로 가장 큰 수가 7인 경우는
선택된 세 장의 카드에 7’이 포함될 때, 7”이 포함될 때, 7과 7” 모두 포함될 때가 있고
각 경우의 수는 6C2, 6C2, 6C1입니다.
따라서 구하는 확률은
(6C2 + 6C2 + 6C1) / 11C3 = 12/55
가 됩니다.
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
위에 설명했듯이 수학적 확률에서는
각 근원사건이 일어날 가능성이 같아야 하기 때문에
똑같이 생겨서 구별되지 않는 대상들을 서로 다른 대상으로 봐야하는
경우가 대부분입니다.
간단한 예로 상자 안에
1이 적힌 공이 한 개, 2가 적힌 공이 두 개, 3이 적힌 공이 세 개,
4가 적힌 공이 네 개, 5가 적힌 공이 다섯 개 있다고 합시다.
(각 공의 크기와 모양은 완전히 일치)
이 중에서 한 개의 공을 뽑았을 때
그 공에 3이 적혀있을 확률은 얼마일까요?
(1) 같은 번호가 적힌 공을 구별하지 않을 때
다음과 같이 5가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 1가지
3이 적힌 공이 뽑히는 경우 1가지
4가 적힌 공이 뽑히는 경우 1가지
5가 적힌 공이 뽑히는 경우 1가지
그래서 3이 적힌 공이 나올 확률은 1/5가 되죠.
하지만 1, 2, 3, 4, 5가 적힌 공의 개수가 달라서 각 공이 뽑힐 가능성이
모두 다르기 때문에 위의 조건 (2)에 어긋나서 틀린 답이 됩니다.
(2) 같은 번호가 적힌 공을 구별할 때
다음과 같이 15가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 2가지
3이 적힌 공이 뽑히는 경우 3가지
4가 적힌 공이 뽑히는 경우 4가지
5가 적힌 공이 뽑히는 경우 5가지
그래서 3이 적힌 공이 나올 확률은 3/15=1/5가 됩니다.
이게 답이죠.
1이 적힌 공부터 5가 적힌 공까지 모두 세 개씩 있다면
같은 번호가 적힌 공을 구별할 때와 구별하지 않을 때의 확률이 같겠지만,
대부분의 확률 문제에서는 외관이 똑같이 생겨서 구별할 수 없는 대상이라도
서로 다른 것으로 취급해야 합니다.
전체 11개중 3개 선택 -분모-
7은 무조권 있어야하니깐 미리 하나 뽑아놓고
나머지 두개 1~7까지 중 두개 선택 -분자-
(조합인 이유는 순서는 고려 하지 않아도 되요
예로들면 7.7.3 이나 7.3.7 은 같은 경우죠
그리고 문제를 읽어 보면 우리가 구해야하는게
선택한것중에서 7이 가장크기만 하면되요 목적을 ! 잊지마세요~)
그럼 7C2/11C3 으로 세우신 건가요?
다시 생각해보니깐 제가 판단을 잘못했어요 ..ㅜ죄송해요 윗분 처럼 확률 정의에 따라 7 .7 같게 보면 안되네요 분류로 하는게 정의에 맞고 분류라는 확률의 목적과도 맞네요
2c1•7c2/11c3