2023 수능 수학 손풀이 (공통, 확통, 미적)
게시글 주소: https://a.orbi.kr/00062878683
2023 수능 수학 손풀이_울고있는치타.pdf
다들 스캔본은 별로라해서 패드를 샀습니다... 이거하려고...
5월 모의고사 갑자기 하면 글씨체 난리날 것 같아서 연습하려고 해봤어요!
패드에 글쓰는게 쉬운게 아니네요 ㅜㅜ 꿀팁 있으신가요
피드백 환영합니다! 저도 지금 다시 보는데 글씨가 많이 작은 것 같네요 ㅎㅎ;
공부에 도움되길 바라겠습니다!
5월 모의고사 손풀이 기다려주세영
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이렇게 처음에 시작했었다가 거세게 붉어졌던거 같은데 과거에도...
-
그럼 죽어
-
덕분에 미련 사악 버린다ㄱㅅ요
-
항상 1등급만 받아왔는데 지인 분께 하위권 학생 과외가 들어왔어요 심지어 고2.....
-
얼버기 2
다들 기분좋은 불금 보내요
-
두고봐 네가 이기나 내가 이기나 해보자
-
기상 완료 오늘 알바 대타가야됨 ㅇㄴ
-
간밤에 6
두명 탈릅에 한명 팥췬가
-
드론 전문가면서 0
각운동량 보존 법칙을 모른다는 사실이 매우 개탄스럽다.
-
얼버기 2
오늘도화이팅이에여
-
5분 휴식 4
하하
-
얼버기 1
-
카페인도 끊었는데 잠이 안옴
-
작년에 한양대 공대 붙여놓은 후 1학년 1학기에 모든수업 빠지고 학사경고 받고...
-
대학 2번 옮기고 군대까지 다녀온 형 보면 난 아님ㅎ
-
히히 1
우히히
-
ㄴ 이분 바보 1
11시에 깨워쥬
-
가 뭔가요? 몇개년치 자료에서 다 평균 합격점수는 글리가 1위네요..
-
뭐 이런소리 나는데 눈 땜에 뭐 무너진거 아님?? 인근에 나무도 막 무너지고 그랬는데… ㅠㅠㅠ
-
3ㅎ5 진학사 입력한사람들은 23명중10명 충족인데 몇퍼정도 예상되나요? 23...
-
강의실에서 n제 풀어야겠음 갑자기 속 뒤집어지네 이런 학교 못다니겠다
-
좆반고 내신7 0
내신7등급인데 논술감점 클까요 단국대 논술썻는데 납치당할까 두려워요ㅔ
-
근거가 많이 없는 불안함인 거 같은데 내년엔 일단 그냥 돈 벌 길 만드는 거랑...
-
노베 기출코드 2
김성은 커리 타려는데 기출 100제는 양이 좀 적은거 같아서요 기출만 양승진...
-
허...
-
노베라 김성은 커리 타려는데 기출 100제 양이 적은 거 같아서요 기출만 다른 강사 강의 들을까요?
-
10분휴식 4
하하하 즐겨야 한다 하하하
-
국어 커리 고민 1
공통 2틀 언매 4틀(ㅅㅂ) 인데 언매에서 21분 박고 폭사했음 솔직히 언매에서...
-
국어 커리 고민 0
25 수능 언매 원점수 78점(독서 7틀, 문학 2틀) 독서 내용 확인, 추론 엄청...
-
줘어어어
-
진찌 세상엔 머리 좋은 사람이 너무 많음뇨
-
아 내일 복귀네 2
복귀하고 공부 다시 시작해여겠다
-
뉴비네요
-
제발제발쪽지부탁드립니디두ㅡㅜㅜㅜ
-
ㄹㅈㄷ 몰카인가 생각했네
-
질문있는
-
10분휴식. 8
-
아 ㅈ됐네 2
어제 저녁 먹고 잤는데 왜 일어나니까 4시냐
-
그럼 지금 고속 자체가 의미 없지않나 차라리 담임쌤도르가 더 의미있는거임?
-
하지만 우리의 윽건이는 ‘꼬우면 재수하지 말지 그랬어’로 받아쳐서 그 누구도 더...
-
어이 내일의 나 4
일어나면 게시글 밀어라
-
잔다 4
르크
-
들 때가 있음 디시콘은 종류가 다양해서 다양한 감정을 표현할 수 있는데 오르비...
-
자야겟뇨 4
오늘도 암것도 안햇뇨
-
역시 하루종일 침대에 누워있는게 맞음 남자는 허리가 생명
-
발뻗잠 3
-
덕코 받고 싶다 6
-
목시 강기원 들을 건데 피시방가서 해야하나 강기원 30초컷이라던데 맞음?
-
블라글 지워주실 수 있을까뇨,,
-
글젠은 없다니
태블릿 적응기라... 부족한게 많아요
날카로운 피드백 부탁드리옵니다...
도움되는 글 감사합니다
잘 보고 가요~ 이웃 신청합니다 ^^
흠 글씨 키워야할것같긴한데 다들 다운받아서 보지않나요..? 제가 태블릿으로 봐서 확대하면 커보이는건지 모르겠네요...
그건 그래염 여기서 보기엔 그러네염
도움되는 글 감사합니다
개추...
깔끔하시당
꺄 치타옵하 머시써요
오 미적 28번 저렇게 삼각형을 확장해볼 생각을 할 수도 있군요
전 현이 같다고 준 조건보고 저 확장이 먼저 떠올랐는데, 이 풀이는 뒤져봐도 찾기 힘들더군요 ㅎㅎ
현의 길이가 같다 -> 원주각이 같다 -> 원 위의 점 E를 떠올려 삼각형 CEQ를 떠올리자 -> ASA 합동
을 이용한 후 삼각형 EOD와 닮음임을 이용해 무한등비급수에서 닮음비로 넓이비 처리하듯 계산..! 어쩌면 이게 정말 출제자가 의도한 풀이일 수도 있겠네요!! 저는
'현이 주어짐 -> 원의 중심에서 현에 수직이등분선'과 '각을 많이 앎 -> sin법칙'으로 주어진 그림 내에서 해결하려던 생각이 첫 풀이였던 것 같네요
기트남어..
기트남어도 해죠오
기트남어...는 고민해보겠습니다
시간이 남으면 해볼게요..!!
14번 ㄷ 사고 과정은 어떻게 하셨어요?
전 현장에서 극한이 중첩되길래 뇌절 왔는데..
극한 중첩이라기보다는...
[-3,1]구간에서 증가하게되면 x=-3을 확인하고 최소를 갖는것을 확인할 수 있고
[-3,1]구간에서 감소하는 함수라면 1에서 최소를 가질텐데, x=1의 오른쪽 왼쪽 극한을 확인할 필요보다는,
*x=1에서 음수의 값을 갖지 않는 것만 확인해도 사실 최소가 없다는 것을 확인할 수 있습니다*
x=1에서 양수가 나오면 밑에 감소하는 함수에서는 x=1의 값이 존재하지 않으므로 최소가 없구나를 이것만으로도 확인할 수 있죠!
그래서 사실 그래프는 보여주기 위해서 그린거고, 극한 중첩도 필요없는 문제라고 할 수 있겠습니다...ㅎㅎ
아하...
이해되었습니다
너무 감사해요 ㅠㅠ
제 부족한 설명이 한번에 이해되셨다니 감사합니닷 ㅎㅎ