'장시인 N제' 수능 수학 문제집 배포합니다.
게시글 주소: https://a.orbi.kr/00063762948
안녕하세요! 수학 공통 과목에 대한 수능 대비를 위한 '장시인 N제'가 출간되었습니다. '장시인 N제'는 수능 수학의 출제된 부분부터 출제되지 않은 영역까지 모두를 포괄적으로 다루는 고퀄리티의 수학 문제집으로서, 수능을 준비하는 학생분들께 많은 도움을 줄 것입니다. 감사하게도 파급효과님께서 서평을 작성해 주셨습니다. 모킹버드에도 좋은 퀄리티의 문제들이 많으니 많이 이용해 주세요~
#문제집 구성
'장시인 N제'는 기본적으로 수능 공통 수학 전 영역을 커버하는 구성으로 되어 있습니다. 대부분의 고등학교 수학 교과 과정을 다루며, 각 영역별로 다양한 난이도의 문제들을 포함하고 있습니다. 개념에 따라 구분되어 있는 문제들은 학습 단계에 맞춰 순차적으로 난이도가 증가하는 형태로 배치되어, 효과적인 학습 과정에 맞춰진 구성이라 할 수 있습니다.
#난이도와 해설
'장시인 N제'는 난이도를 다양하게 조합하여 구성하였습니다. 기초 개념부터 응용 문제까지 포함되어 있어, 단계적으로 난이도를 높여가며 문제 풀이 능력을 향상시킬 수 있습니다. 또한, 모든 문제에는 상세한 해설이 오르비 장시인 페이지를 통해 함께 제공됩니다. 학습한 내용의 이해도를 높이는 데 도움이 되는 해설을 차례로 업로드할 계획입니다.
#모의고사로도 제공되는 N제들
'장시인 N제'는 모의고사 형식으로도 따로 구성되어 있습니다. 장시인 모의고사는 수능을 실전 위주로 대비하는 데에 큰 도움이 되고, 시험 상황에 익숙해지고 효과적인 대응 능력을 기를 수 있도록 도울 것입니다. 수능에 가까운 형식과 난이도의 문제들은 실제 시험 경험과 유사한 수준에서 학습할 수 있게 해줍니다. 해당 모의고사들은 해설과 마찬가지로 오르비를 통해 만나 보실 수 있습니다.
#문제 해결 전략 제시
'장시인 N제'는 단순히 문제를 푸는 데 그치지 않고, 문제 해결에 필요한 전략과 방법을 제시합니다. 전 문항 꼼꼼히 기재된 코멘트를 통해 문제를 더욱 효과적으로 풀이할 수 있는 논리적 사고력과 문제 해결 능력을 기를 수 있습니다.
#별도의 보충 자료 및 온라인 리소스
'장시인 N제'에는 문제집 외에도 보충 자료와 온라인 리소스가 함께 제공될 것입니다. 기존 문항들을 변형한 문항이나, 새로 등장하는 평가원 모의고사들을 반영하여 기존 문항에 대한 보충 자료를 업로드할 것입니다. 이를 통해 학습한 내용을 보다 심도 있게 학습하고 복습할 수 있으며, 언제 어디서나 편리한 학습이 가능할 것입니다.
'장시인 N제'는 수능 수학 대비에 필수적인 도구로서, 수학 영역에서 좋은 성적을 얻기 위한 모든 학생들을 위한 교재입니다. 꼼꼼한 구성과 풍부한 문제들을 통해 여러분의 수능 수학 실력 향상에 도움이 되기를 바랍니다.
서평
"안녕하세요. 파급효과입니다.
먼저, 수험생활 중임에도 문항 제작에 대한 열정으로 무료 N제를 배포하는 것에 경의를 표합니다.
오르비에서 여러 문항 제작자를 유심히 살펴보고 스카웃하는 입장으로서
장시인 님은 충분히 좋은 문항 제작자로 성장할 여지가 커서 관심을 갖게 되었습니다.
이번에 배포되는 '장시인 N제'의 주요 문항들에 대하여 평을 남기자면...
수1은 실전에서 마주치는 문제에 비해 다소 어렵고 수2는 많이 어렵습니다.
매운 맛이지만 문항들이 꽤 괜찮습니다.
아무쪼록 많이들 풀어주시고 솔직한 후기 남겨주세요.
무료 문항 제작들에게 큰 힘이 됩니다."
-파급효과-
***
"안녕하세요. 장시인입니다.
저희 장시인 N제는 새로운 시각을 향한 경험 공유를 추구하는 자체 N제입니다.
오르비에서 지금까지 다양한 문제들과 모의고사들을 올려 왔는데요.
짐작하시는 분들도 계시겠지만, 저 역시 수험생으로서 입시를 치르고 있는 입장입니다.
다만 복잡한 수험생활 중에도 틈틈이 문제를 만들면서 쉬는 것이 저의 낙이었고
그렇게 쌓인 문제들을 여러분이 좋아해 주셔서 업로드하게 되었습니다.
문제 만들면서 여러 곳에서 연락도 오고, 제의도 많이 받았는데요.
비록 수험생 신분이라 당장은 힘들다는 말씀 드렸지만, 파급효과님을 비롯해서 도와주신 분들께
정말 감사하다는 말씀 드립니다.
비록 부족한 것이 많고 앞으로 4개월 간의 활동은 수능 대비로 힘들겠지만,
길게 보며 발전하는 장시인이 되겠습니다.
감사합니다."
-장시인-
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기출 다 풀고 n제양치기까지 하는 수험생 비율
-
중학교때 공부에 미쳐살아서 2등박고 모 전사고 진학. 슬럼프오고 2학기때 일반고...
-
일단 바탕 엔딩(4회분), 이감 하반기 3호, 한수 막판욕전 패키지, 혜윰 s2,...
-
말도안돼...
-
미팅나가는거 개오바야? ㅋㅋㅋㅋㅋㅋㅋㅋ
-
관동별곡? 안해 0
나오면 안풀면 그만이야~
-
아 악몽꿈 2
꿈에서 수학 60점대 맞음
-
솔직히 이게 맞는건지 모르겠다 변별하기위한 문제를 너무 억지억지해서 내는 느낌이다...
-
5000부 판매돌파 지구과학 막판 총정리집을 소개합니다. (현재 오르비전자책 1위)...
-
항상 70점대 초중반 3컷~낮3에서 진동했었는데 오늘 독서 주제들이 좀 억빠해줘서...
-
이거 두개는 솔직히 안나올듯 ㄹㅇ.. 옥루몽 옥린몽까진 공부함
-
지금 현역 고3이고 목표는 홍익대입니다. 국3 수6~7 영1 한지1 세지1 나오는데 머가 낫나요..
-
저반사 필름 붙히고 메탈 펜촉 적당한 거 쓰니까 필기감 확실히 나아짐 이참에 패드...
-
어제 씻고잤는데 1
아침에 안 씻는건 합법? ㅇㅈ?
-
버스 ㅈ같은 점 0
Ask 들 등교시간 맞춰서 9시 전에 버스 ㅈㄴ 깔아놔서 9시 이후 버스 배차 ㅈ됨 ㅅㅂ
-
답이 1번이면 좀 허무한 감이 없잖아 있네..
-
컨디션 0
요즘 학교 안가서 평소보다 공부를 좀 많이해서 너무 피곤한데 조금은 쉬는게...
-
댓글에 날선분들이 있어서 제가 글을 좀 잘못쓴것같아요 일단 전 공대가 의대보다...
-
수학 소신발언 0
확통보다 공통이 더 잘풀림
-
아무도 나를 막을 수 없어 ㅎㅎ
-
1) 학교가 평지인가? 2) 평지가 아니라면 셔틀이 자기 단대(학과)까지...
-
수능때 긴장해서 필적 확인란에 ’만점으로 가는 지름길 콘텐츠‘ 적으면 어케...
-
ㅋㅋ 이틀 연속 시대 지각이네..
-
난이도가 하~중상 정도면 노력으로 되는데 그게 아니면...아무리 해도 안됨
-
주말로 착각해쏘
-
내년에 가기전 에 올해거 한번 훑어보려 하는데 내년이랑 겹치면 안될것같아서 그러는데 많이 바뀌나요?
-
ㅈㄱㄴ
-
저는 재수하고 1년정도 학교 다니다 군대 들어갔습니다 가고싶은 과랑 학교가 생겨서...
-
4뜰 확률 큼?
-
이게 더 복병이네
-
토너 떨어져서 사러가야해요,,,
-
6모 9모 안나왔긴한데
-
동생이 무조건 인서울 끝자락 공대라도 고집하는데 지거국 공대라도 보내는 게 나을까요,?
-
해모 vs 설맞이 10
둘 중 뭐가 더 낫나요
-
등장 11
-
미적 1컷 특) 6
개념문제 : 아 맛있네 (요즘26번정도의)기출문제: 하스읍 ㅡ하 ㅡ컷...
-
미적기준
-
시발 진짜로 페약은 800이 아니라 500도 힘들단말야 개국하면 1000+ 근데...
-
빠워빠워 0
빨빨나러
-
이제 3개년 기출 끝내고 실모 들어가려는데 배울게 많은 실모였으면 좋겠음. 근데...
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
굳모닝 2
-
문학 시간 어케줄임 9모 10모처럼나오면 100맞긴함
-
히카 시즌 추천 0
작수정도 난이도로 시즌 2개 정도만 추천해주세요! 평가원 기준 미적 1~2진동해요.
-
도로 일방통행돼서 늦엇잖아 ㅅㅂ 넌 지나가다 새똥이나 맞아라
-
샤프심이 없음 ㅅㅂ
-
11월달이에요 0
다들 화이팅
-
[모의고사 무료 배포] 영피디 수능영어 모의고사 1회 1
오르비에 처음으로 고3 수능직전 봉투모의고사 자료를 제작하여 올립니다. 안녕하세요,...
-
10모기준 높1 3컷 2 50 47 나왔는데 성균관대 끝자락이라도 가능할까.....
감사합니다 ㅎㅎ
레벨별로 번호대 대충 알려주실 수 있나요?
레벨 1은 4점 초중반부 문제 + 단순계산
레벨 2는 11~15번에서 20~22번급 어려운 문제고요.
레벨 3은 22번 이상급 초고난도 문제
레벨 4는 N제니까 낼 수 있는 수준의 문제들입니다.
감삼다
일단 3까지만 풀어봐야겠네요
좋은 자료 감사합니다
+ 혹시 기존 모의고사 5회와 동일 문제 구성인가용
기존 모의고사 우수 문항 + 새로 선보이는 제작 문항 둘 다 있습니다!
장시인모의도 헬이던데…n제도..허수는 이만 물러갑니다
굿 :)
혹시 해설은 어떻게 보는 지 알려주실 수 있습니까....
해설은 이미 올라간 문항들도 있고 하나씩 차근차근 올릴 것이나 올해는 말씀드린 사정으로 다소 더딜 수도 있습니다. 다만 쪽지로 문항 번호 알려 주시면 문제별 손해설은 보내 드립니다.
감사합니다!!!