눈풀가능?
게시글 주소: https://a.orbi.kr/00063906682
삼차함수 비율관계로 마무리됩니다.
인수의 관점에서 x를 묶은 뒤에,
나머지 부분을 관찰한다고 보셔도 돼요.
끝!
#무민 #짧은칼럼
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
존잘 존예 ㅇㅈ 0
그만.... 자존감 떨어져... ㅜㅜ
-
아무거나 해주세요 답할지 말지는 몰루
-
글몇개를쓴거야이버러지새끼
-
강동고 03년생 있냐
-
아 불면증 2
어쨋거나 자는건 생리현상같은건데 어젯밤도 새놓고 또 졸리지 않다는게 이해가 가지...
-
정상 질문 받아요 10
이번에도 이상한 질문하면 철권으러 따라와
-
차이 별로 없으면 삼수 안하는 게 맞나요? 재수 하다가 8월부터 일이 생겨서 공부를...
-
일탈 즐거웠다 5
-
다시 존예가 인증할 차례다
-
나만 그런생각한게 아니라 다행이네
-
아...
-
질받하고 자겟습니다 23
무슨 질문을 하든 진실만을 말하겠슴뇨
-
ㅇㅈ 6
방 ㅇㅈ
-
너무졸렵다 6
-
ㅇㅈ 15
ㅈㅌ
-
지금까지 저는 컨셉질이었던거임
-
도와줘라
-
4시 전엔 잔다 5
반드시 그래야만 해. 9시에 기상해야 한다고.
-
짤볼때마다배알꼴린다그냥돈을거저로버네
-
ㅇㅈ 2
3배각 공식 ㅇㅈ
-
26수능 잘봐서 5
서울대 합격해서 오르비 인증하고 싶다.. 25년도 소원은 서울대 최초합 뚫는거..
-
님이 이성한테 안 먹히는갑니다... 어떻게 아냐구요? 이씨발나도알고싶지않았어
-
수학 0
과외를 꼭 해보고 싶어요 시급 얼마든 중요하지 않고 가르치는걸 엄청 좋아합니다 작수...
-
지금 ㅇㅈ 5
하면 사람들이 많이 보나요..???
-
마킹이나 가채점표 실수는 안했다고 확신할수있습니다 연대 경영이나 서울대 인문 가능할까요…
-
나랑 사귈 남자 구함 16
자 이제 헤어지자
-
형아가 크리스마스 이브까진 해 오랬는데 시간이 안 나서 걱정이야
-
수1이랑 수2 합친정도임?
-
야한 질문해죠 8
고소안함.진짜임.
-
넌천재구나..
-
복싱하러 내잉 등록 갑니다.
-
국어 100이신 분들 11
누구 들었나용
-
이시간에깨잇는거 5
거의 한 4년만인듯
-
틀딱 기준 16
몇 년생부터임
-
그래도 큰 사고없이 무난하게 낸거같네욤.. 오류시비같은것도 없고 괴랄한 등급컷도...
-
정상적인 질문만 받음 23
정상위 질 문질 아님
-
자야겟다 2
진짜 잠뇨
-
센스는 타고나야 하는 듯.. 에효이
-
어떻게 고르는 건가요 고3때 정석민쌤 들으면서 와 정말 너무 명쾌하고 좋다 했는데...
-
통모짜핫도그 3
요즘잘자쿨냥이
-
인증 17
-
2호선 서울대입구역에서 적당한 출구로 나와서 따뜻한 인사와 함께 5511탑승
-
선넘질받 18
선 안넘으면 고소함
-
대학 학점 질문 3
학점은 어떤거로 매기는건가요 고등학교마냥 그냥 시험치고 교수가 채점하고 abc 주는건가요?
-
밤을 꼴딱 새고 쪽잠도 재낀 채로 하루 종일 몸을 혹사시키면 좀 잊어지겠지 어차피...
-
그게 나야 바 둠바 두비두밥~ ^^
2017년 11월 고2 학력평가 가형 30번이 생각나네요 ㅎㅎ
이 문제인가요?!
그렇습니다.
걸어다니는 평가원 아카이브 ㄷㄷ
심지어 평가원이 아니구나
맞췄당 ㅎㅎ
시대에서 이거 처음 배우고 충격받음
유익하네요
빨간점 a 노란점 b로 두고
4 + b = 2a
4 + 4b = a^2
무지성으로 근계관 쓰는방법도
나도 모르니까 그냥 이랬는데
두번째 식은 어떻게 나온 거애요??
4차 다항함수 식에서
3차항 계수는 근의 합(a+b+c+d)
2차항 계수는 두 근끼리의 곱의 합(ab+ac+ad+bc+bd+cd)
1차항 계수는 세 근끼리의 곱의 합(abc+abd+acd+bcd)
0차항(상수항) 계수는 근의 곱(abcd)과 관련이 있는데,
4차와 직선(1차)를 연립해봤자 2,3,4차항은 보존(불변)이므로 근의 합과 두 근끼리의 곱의 합이 유지됨을 나타낸 수식입니다
근데 저거 과정 수식 좀 알려주시면 안되나요?
능지가 딸려서 이해가 안돼요 ㅠ
인수나누기, 기울기함수 관련 칼럼 찾아보셔요
참고가능한 사진 하나 첨부해드릴게요
혹시 칼럼 어디서 가져오신건지 여쭤봐도 될까요,,? 가서 읽어보고싶어서요
헤헤
간격곱이 뭔가요
거리곱이라고 검색해보시면 나올거에요
https://orbi.kr/00062385201
이 칼럼 맨 마지막 부분에 설명되어있습니다 :)
와 신기하네요
저는 엄청 발상적으로 근의합 원리처럼
일차를 사차에 더해도 2차항은 그대로일 테니ab+ac+ad+bc+bd+cd가 일정하게 나오는 원리로겨우 눈풀햇어요
권경수가 알려줌 ㅋㅋ
앗… 이게 이렇게 유명해져 버리면…..!!!
기울기함수 느낌이네요 볼록접에서 극값을 갖는...
권경수의 몫합수 ㄷㄷㄷ
님 ㄹㅇ권경수인가..
이동준의 인수나누기...?
딱 이거다 ㅋㅋㅋ
권경수의 차원 찢기 ㄷㄷ
어려워요 ㅠㅠ