항상 f'=0인 지점에서 극대/극소 인건가요?
게시글 주소: https://a.orbi.kr/00063973143
안녕하세요 수2공부하는 고2인데 궁금한점이 생겨서 질문드려요..... 제가 배우디로는 연속인 함수에 대해 함수의 증감이 바뀌는 다시말해 f'의 부호가 바뀌는 지점이 극대/극소라고 들었어요(여기까지는 이해가 가요) 그런데 왜 미분가능한 함수면 f'=0인 지점이 극점인가요? f'이 연속함수라면 사잇값정리에 따라서 부호가 바뀌려면 f'(c)=0인 지점이 반드시 존재하니 성립하지만 미분가능이라는게 f'값이 존재만 하면 되잖아요? 그러니 도함수가 불연속일수도 있지않나요? 그러면 사잇값정리를 못쓰니 항상 f'=0인 지점이 극점이라고 할수는 없지않나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
. 0
벡터 분해 후 힘 합성 벡터 분해 후 평속 힘 합성 후 벡터 분해 중력끄기 (벡터...
-
이번 미적 28 29 30 다 틀렸는데 시발점부터 다시 할까요? 0
고민중 베이스가 약한건가 싶기도…
-
고1입학할 때 옆자리에 일찐녀랑 짝꿍이 됬는데 내가 만만했던지 날 의자취급하더라...
-
의대 망했다면서 다들 메쟈의 목표로 반수함.. 올해 경북의 그분도 결국 메쟈의...
-
Riesz representation theorem 3
Schur's theorem Gram-schmidt orthogonalization...
-
수학 난이도 어땠음?
-
현역때 35343으로 덕성여대 붙었는데 24221로 덕성여대를 가..? 수학이 많이...
-
신검받으러가요 9
귀찮네요
-
한심한 2
나!
-
지구 노베고 오지훈쌤 들으려면 메가패스 구매해야하는데 그냥 이훈식쌤 듣는게...
-
3수하면 슬픈점 4
내가 군대다녀오면 나랑 동갑인 사람중에 대학을 졸업하는 사람이 나온다는 거임..
-
한지 vs 사문 1
현재 사탐런을 준비하고 있는 예비고3입니다. 평소 구글어스로 다져진 세지 관련...
-
안정적으로 될까요 아니면 좀 빡센가요
-
물리 잘 6
할거 같이 생긴 나
-
장난전화 0
-
1년전이랑 똑같은글 썼는데 똑같은반응이 있음,,,,,,
-
대학원생 아저씨입니다. 재작년 쯤부터 입시철마다 물리학과/자연대/공대 진학 관련...
-
독서 배경지식 쌓을려고 교과서 읽는 건 어떻게 생각하세요? 2
중학교, 고등학교때 뭘 하고 왔는지 관련 지식이 떠오르지가 않네요... 젠장할...
-
. 2
근데 가끔 친하진 않지만 근황이 그리운 사람이 있는듯 ㅋㅋ 저도 그 중에 포함되는...
-
대가로 내 이미지가 곱창날거 같긴한데..
-
근데 진짜 이감 성적이랑 수능 성적이랑 거의 상관이 없나봄 1
상관이 있어봤자 고득점하면 한 수능날 3등급 이상은 맞는다 이 정도 근데 아무짝에...
-
크럭스나 피오르 1
당일날 미리 대기타고 파바박 해도 실패 할 확률이 있는거죠...? 하 너무 절실한데 ㅠㅠ
-
오늘도 다 퍼진 라면 먹으면 개추좀.. 나임 뭘봐
-
약간 잠긴 목소리 이것부터가 분위기 압도하네 걍
-
나머지는 그냥 2하는거 추천 특히 물2화2는 대학다니는 공붕이들이 다시 공부하기에...
-
내투자철학임
-
여르비 ㅇㅈ 8
군필여고셍
-
주제넘게 사람살리는 의사 되려고 나대지 말라는거임 니가 특출난 사람이 아니고...
-
님들 어그로 죄송한데 김범준 커리 탈까요 현우진 커리 탈까요 올해 수능 81점(20...
-
하 시발 악몽꿈 0
수능 이미 좆망했는데 수능장에서 허둥대는 악몽꿈ㅋㅋ
-
어차피 설명의무를 다하지 않았다는 판결 그거 그냥 꼬투리잡고 도의적 배상하라는...
-
연고대 가고싶다 0
제발 사탐이들에게 구원을
-
병훈T 강의가 곧 사라진다는 사실이 너무나 아쉽네
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
n년을 쏟아부었는데 올해도 안될것 같네요 정시의대는 진짜 미친짓인것 같습니다
-
책 추천해주세요 7
경제 관련된 걸로
-
님들이라면 어디 가심
-
ㅈㄴ 생산적인데 시간도 잘감
-
텔그살말 2
7만7천원 내고 궁금증을 해소함과 동시에 정신병을 얻기
-
"카세트를 오디오에 넣고 스위치. 카세트를 오디오에 넣고 스위치. 카세트를 오디오에...
-
난 사실 미소녀 12
겠냐 왜 들어옴?
-
보통 가천대 준비히면 학원들 다니길래
-
지사의랑 입결 비슷한가요
-
내년에 또 할거같은데 목표는 메디컬임 올해 수능 화학 47점 맞음..2컷 점수고...
-
쉬워서 할말이없네ㅋㅋㅋㅋ
-
개찝찝하네 이거 어캄 피부병걸리는거아님?
부호가바뀌면 극점임 하지만 연속함수니까 부호가바뀔때 0을지날수밖에없죠
답글 감사합니다 연속함수라는건 도함수 말씀하시는거죠? 그럼 도함수가 불연속인 경우는 없는건가요?
도함수가 불연속인 경우도 존재합니다 참고로 수2에서다루는 다항함수는 미분가능한 연속함수입니다 도함수도 미분가능하고 연속입니다
에초에 미분가능한 함수면 연속이구요.
답변 감사드립니당
미분가능한데 도함수가 불연속인 경우는 있어요. 수2 범위 밖이긴 한데 대표적으로 x²sin(1/x)가 그럼
근데 미분가능한 함수에서 극점인데 미분계수가 0이 아닐 수는 없을 것 같은데
'증감이 바뀌는' 이게 대부분의 경우에는 맞긴 한데..
극대 극소의 정의는 그게 아니긴 하거든요
x²sin²(1/x)의 경우에는 x=0에서 극소이고, 미분계수 0이고, 도함수 불연속일 것 같음 귀찮아서 검증은 생략..
sin(1/x) 이런 류의 함수들은 x가 0으로 갈수록 1/x가 점점 커지잖아요? 무한히? 그래서 사인값이 계속 요동친다고 생각하시면 됨 그래서 증감이 무한히 바뀌어요
평소에 만나는 함수들은 x=a에서 극점이다 할 때
어떤 아주 작은 양수 h를 설정해서, 열린 구간 (a-h, a)에서는 감소고 (a, a+h)에서는 증가다, 이렇게 할 수 있잖아요
근데 저 sin(1/x) 같은 애들은 그런 열린 구간을 잡을 수가 없어요
x=a에서 극소라는 것의 정의는 x=a를 포함하는 열린 구간을 잡을 수 있다, 어떤 열린 구간이나면 그 구간 내의 모든 x에 대해 f(x)>=f(a) 이거임
도함수가 불연속인데 도함수의 f'값이 그지점에서 있는경우는 존재할수가없는케이스입니다. 도함수f'값이 존재하면 원함수가 미분가능하고 도함수의 f'지점주변도 다 연속이라생각하시면됩니다. 원함수가 미분가능일때 도함수가 불연속이면서 도함수의 그지점함숫값이 존재하는경우는 없다고 생각하시면됩니다. 그리고 논외로 f'=0이라해서 항상 극대/극소는 아닙니다. y=x^3보시면 원점에서 극대,극소아니고 f'(0)=0입니다
갑사합니다
변곡점일 수도 있어요!
도함수 부호변화로 판단하세요
답변 감사합니당
그리고 댓글 반응을 보니 질문을 좀 더 정돈해서 쓰시는 게 좋을 것 같아요.
제가 생각하기로는 작성자분이 궁금해하시는 것은, '미분가능한 함수는 극점에서 항상 미분계수가 0인가?'인 것 같거든요? 근데 댓글에서는 '미분가능한 함수에서 미분계수가 0이면 항상 극점인가?' 이걸로 이해하신 분들이 계시는 것 같아요. 만약 후자를 궁금해하신 거라면 제가 잘못 읽은 것이구요. 아무튼 간에 ~이면, 항상, 이런 말들의 포함관계를 잘 생각하고 질문을 하셔야 소통이 잘 될 것 같아요.
넵 담부터는 더 신경써서 작성하겠ㅅ슴니다 답변해주셔서 감사합니다