23수능 수학 100점의 수학 필기 노트
게시글 주소: https://a.orbi.kr/00064125069
필기 요약-연연하지말고 이연.pdf
수학 정리(공통)-추가 파일.pdf
#6페이지 오타 발견했습니다.
파일에서 a라 적혀있는 부분을 그림처럼 c로 수정해주시면 감사하겠습니다.
안녕하세요!
연연하지말고 이연입니다! :D
오늘 제가 가져온 내용은!
제 수학 스킬 정리 노트의 내용 중, 제가 사용하는 내용을 정리해서 가지고 왔어요!
사실 거리곱이라느니, n축이라느니, 그런 거창한 닉네임의 스킬들...
저는 모르거든요 ㅠ.ㅠ
이런 스킬들은 저도 배워보고싶네요 ㅋㅋㅋ
잠시 이야기가 주제를 벗어난 것 같아요!
다시 하려던 이야기로 돌아와볼게요!
"그럼 저런 근사한 스킬도 없는데 도대체 왜 본인 필기를 가지고 온거냐!"
하실 수도 있는데요,
그렇게 물어보신다면...
대답해드리는게 인지상정!
먼저, 이 스킬을 보고 이미 익숙하다고 생각하시는 분을 위해서는, 이정도의 스킬만으로 충분히 평가원 1등급을 받을 수 있다는 점을 알려드리기 위해 가져온거랍니다!
그런 분들이 원하는 점수가 안 나오신다면, '내 스킬이 부족해서 그런걸까?'라고 생각하시는 것보다는 문제 풀이양이 부족해서 그런거라고 파악하시는게 좋을 것 같아요!
아직 저 내용이 생소한 친구들도 있을 수 있겠죠?
그런 친구들은 저 내용 배워가면 좋을 것 같아요!
물론 이런 친구들도 다양한 문제를 풀어봐야겠죠?
요약만 있으면 좀 섭섭할 것 같아서!
이전 게시물에 올렸던 내용이지만 쓸모있는 내용인 공통부분 스킬 요약+예시 기출문제 풀이 파일도 가지고 왔어요!
그럼 안녕!
다들 파이팅하세요!!
저도 틈틈히 도움되는 내용 가지고 와볼게요!!
질문 있으면 댓글로 남겨주세요!
(좋아요와 팔로우 하나에 저는 날아갈듯이 기뻐한답니다!)
0 XDK (+1,600)
-
1,000
-
500
-
100
-
미적 vs 확통 1
확통에서 3개 맞아서 재수하랴고 하는데 미적할까.. 완전 초반이랑 통계는 풀 수...
-
역사적인 순간 ㄷㄷ
-
얼버기 6
-
작년에 스나 해보니까 ㄹㅇ 피말려서 수명깎임
-
교사 월급이 어케되남 먹고 자기에는 부족한가
-
근데 내년에도 사탐이 어려울지 아닐지는 모르는거 아님? 4
메디컬가려고 사탐하는 사람들은 그럼 확실하지 않은거에서 일단 고 이러면서...
-
으헤헤
-
일식이요
-
0에 수렴할까요.. 하나 고치려는 순간 종쳐서…………………. 40점 됐는데…………..
-
1년더 해야되는데 화학 1 탈출해야하나 말아야 하나 너무 고민입니다 47받는순간...
-
국수영생윤정법 87 81 2 97 89 홍대 인자전이랑 동국대 열린전공이 군이...
-
질문하는 듯 하다가 본인 or 자식 자랑만 늘어놓는 화법 정말 별로임 울학교 경비...
-
나이차vs외모 4
10살연상 존예vs 나이차얼마나지 않는 평범녀
-
지금 강기분 토오전반 대기번호 520번대에서 3주만에 251번으로 줄었는데 개강전에...
-
세개 다 현장 응시 23>>24=25 23수능을 넘는 수학시험은 앞으로 안나올거같음...
-
더 친절한가요 아무래도
-
25수능 수학 틀린 번호는 15 20 21 22 (미적) 27 28 29 30...
-
보면 사람들 물타기도 심하고 정답을 정해놓고 사고하는 것 같음
-
어문에서 경영으로 복전하는 것만큼 경쟁률이 많이 치열해요???
-
올해 수능 44166입니다 화작 미적 생명 지구이고요 중학교 때 전교 1등으로...
-
GOAT
-
이시절 수학 진짜 좆같았는데 이때(23) 비해서 요새 솔직히 많이 쉬워졌다고 생각함
-
벌륨매직마렵 2
ㅗㅇ유ㅠㅇ우우웅
-
ㅈㄱㄴ
-
질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
-
화1 3 2
화1 42점 3될까요??
-
국어 85 수학 88 국어는 수능 기조 바뀐 후로 극복이 안 되네. 수능 기조...
-
뭐하지…
-
성적...? 헤으응
-
아는 지인이 오늘 서울대 수학과 면접 봤는데 면접 방식이 수학문제 풀기라는 거...
-
얘드라 하이하잉 4
-
재수 한국교원대 삼수 약대임 ㅋㅋ 지금봐도 ㅈㄴ 올리긴했노
-
차라리 생1지1을 하는게 낳아요 문과분들도 과탐런하세요~
-
의약품합성학 2
이새끼 개같으면 개추 ㅋㅋ
-
목표는 중경외시였지만 이번수능은 경북대가 최대인거같네요. 대학 가더라도 한번 더...
-
ㅊㅊ
-
지방메디컬은 사탐 허용 학교가 희귀함. 몇개 있다는데 일일히 찾긴 너무 많아서...
-
그.. 대학을 안 물어보시고 전공만 물어보셔서 대답해드렸더니 오해를 산 것 같네..
-
파이널집 들으면서 늘 그 생각함
-
ㅠㅠ 우리엄마 6평9평보고 기대 많이 하시던데 하..
-
재수하는데 빨리 사서 풀고싶음
-
진짜 개망할뻔 했네 스토브리그 보는거에 몇시간이 지나가는거야 ㅋㅋㅋ
-
일단 저는 수능이 미응시처리 되었습니다 가천대 논술은 가보고 싶었는데 아쉽네요.....
-
3학년임
-
반대로 전공과 무관한 일로도 먹고 살기가 가능한게 요즘인거 같음
-
안녕하세요 전역6개월남은 육군 군수생 입니다 22살 이고 내신 6등급 이였고...
-
잘 안팔렸나 당황스럽노.......
-
화학이 37 점이 나와버렷는데 3등급 가능할까요?? 논술 최저가 걸려 있어서 일단...
-
멍청한 나도 대충 괜찮게봄뇨
-
연논 1
어케될까요
목동 카르텔의 자랑
감사합니다 선생님
저도 감사드립니다 지인선센세
그나저나 여성분이라더니 프사 그림은 왜 남성분이신가요??
ㅋㅋㅋㅋ
여자로 바뀌었네...
max min sgn 이런 건 문제 풀 때 알아 주면 좋은 것 같긴 해요
평소에 수학 공부하다 알던 거긴 하지만 출제위원 분들이 아이디어 갖고 오시는지
거리곱 n축은 사실 이름만 근사하고 알고 보니 제가 알고 있던 것들이더라고요
물론 그걸 완벽하게 소화하고 있지는 않았지만 이름 붙이기 나름이라...
여튼 읽어주셔서 감사합니다!!
영재고 대비때 그거 배울때 중선 정리 일반화라고 느낄 정도로 범용적으로 와닿았던 듯..인정합니다.
저도 중선정리나 각이등분선 정리 일반화라는 느낌이었어요!
스튜어트의 예토 전생은 저도 배워보고 싶네요. 배우면 혹시 두 번 살 수 있나?
16번 페이지에 g(k)=∫|fx)-k|*dx에서 k가 증가하면 넓어지는 길이는 쪽은 넓이 부호가 음이고(f(x)k)왜 g'(k)=넓어지는 길이-좁아지는 길이 인가요? 처음보는 개념인데 어디서 배울 수 있는지 알려주실 수 있나요?
오늘 내로 정리해서 답글 달겠습니당!
기본적인 설명은 사진 부분 참고하시면 될 것 같습니다. (합성함수 미분 사용합니다.)
추가적으로 관련 내용 말씀드리겠습니다.
1. 질문 주신 내용에서 f(x)는 주어진 그림과 같다는 점을 전제하고 유도한 내용입니다. 즉 f(x)가 적분 구간 내에서 0 이상인 증가함수일 때 성립합니다.
2. 요약본에서 '넓어지는 부분', '길어지는 부분' 이라는 표현 또한 f(x)과 그림과 같다 전제할 때 나오는 표현입니다.
사진과 같이 g'(k)의 식을 유도하고 나면 나오는 결과물을 길이처럼 해석할 수 있습니다.
그 길이를, 'k가 증가할 때' '넓어지는 길이/좁아지는 길이'라고 표현한 것입니다.
즉 함수가 감소함수로 바뀐다면 좁아지는 길이-넓어지는 길이로 바뀌게 되겠죠?
3. 식으로 유도하지 않는다면, g(k)를 넓이로 보고 g'(k)는 넓이의 변화량인 길이로 보는 관점도 존재합니다.
4. 저같은 경우는 학원 수업 들으면서 배운 내용이긴 합니다만, 미적분에서는 직접적으로 저 식을 주는 문제가 종종 존재합니다. (합성함수 미분 적용할 수 있어서요)
또한 제가 알기로는, 작년 경희대 의약학계 논술에 관련 내용이 출제되었던 것으로 알고 있습니다. (이후 답글 사진에 첨부하는 논제 1-2가 이 내용을 적용하기 좋은 논제입니다.)
더 질문 있으시면 답글 달아주세요!
6페이지 도형관련 성질에서 분자 잘못쓰신거같은데 아닌가요?
감사하면 혹시 제 최근글좀 봐주시면 안될까요ㅠㅠ
네넹 하던일만 마무리하고 읽어볼게요!
넵 천천히 봐주셔도 됩니다 감사합니다ㅠㅠ
감사합니다 잘쓸게요
감사합니당!
진짜 도움되는 수학황
고맙습니당 헤헤
그런 분들이 원하는 점수가 안 나오신다면, '내 스킬이 부족해서 그런걸까?'라고 생각하시는 것보다는 문제 풀이양이 부족해서 그런거라고 파악하시는게 좋을 것 같아요!
<< 너무 아파요 선생님 ㅠㅠ
ㅋㅋ 감사합니다 잘 볼게요!!
ㅋㅋㅋ 사실 저 말은 작년에 제가 고민했던 것 중 하나여서 넣은거기도 해요!
잘먹겠습니다 G.O.A.T
갓
감사합니당!!
베푼만큼 보답받으시길
감사합니다!
좋은 자료 감사합니다!
8-수능전까지 수학 공부 루틴 알려주실 수 있나요???
앗 조금 이따 시간날 떄 답글 달게요!!
기본적으로 최소 일주일에 실모 1개정도는 푸는거 추천드려요!
시험을 보고 나서, 틀린 문제 중 몰라서 틀린 문제가 많을 경우에는 그 주에 실모보다 n제를 많이 풀고,
몰라서 틀린 문제가 많이 없었다면 n제보다 실모를 많이 푸는 걸 추천드려요.
질문이 추상적이라서 구체적으로 대답하기가 조금 어렵네요ㅠㅠ 궁금한 거 있으시면 답글 더 남겨주세요!
일주일에 실모 한 번씩하고 나머지 날은 문해전 푸는데 하루에 과목당 5문제씩 총 15-20문제정도 푸는데 어떤가요??
실모봤을 때 몰라서 틀리는거랑 운영능력이 부족해서 맞을 문제도 틀리는거랑 반반인것같아요 히카, 킬캠 푸는중인데 대체로 70후반에서 80점 이정도 떠요
사실 여기서부터는 제가 이게 맞다 답을 확정드릴 수 없는 내용인 것 같아요. 아무래도 저는 친구의 목표도 모르고, 사람마다 실력 오르는 속도도 조금씩 다르니까요ㅠ
정말 추상적인 대답밖에 못 드릴 것 같은데,
본인의 목표에 비춰봤을 때 그 양이 부족하다 느껴지시면 실모나 n제 양을 늘리는 게 좋을 것 같고,
목표에 도달하기에 충분한 양이라 느껴지시면 그대로 유지하는게 맞는 것 같아요.
다만 수능은 90점을 목표로 하면 80점대가 나올 수도 있는 시험이니까, 목표한 만큼이 아니라 목표한 것보다 더 공부해야하는것 같기는 해요...
정확한 답변을 못 드려 죄송합니다ㅠ
시발 섹스 감사합니다 잘 볼게요!!!!!
감사히 잘 받겠습니다!
9모 꼭 1 받을게요!
파이팅파이팅!!
쪽지로 질문드려도 될까요?
네넹!
와 감사합니다
우와
우와!
혹시 고1 때 수학공부 어떻게 무엇을 하신지 궁금합니당!
모의고사가 2등급-1컷 나왔던 걸로 기억해요.
고1때 저 가르쳐주시던 학원 수학선생님 만나면 너가 이렇게 수학을 잘하게 될 지 몰랐다고 하세요...
수학1 개념은 고1 2학기때, 수학2 개념은 고1-고2 겨울방학 떄, 미적분 개념은 고2 여름방학떄 공부했었습니다.
본격적인 수학공부는 고2 2학기부터 했어서, 고1때 공부했던건 막 이야기해드리기가 어렵네요ㅠㅠ
죄송합니다....
우와ㅠㅠㅠ 그럼에도 이렇게 수학을 잘하시게 되었다니... 대단하시네요ㅠㅠ
답글 달아주셔서 너무 감사합니다!
첫 번째 파일에서 삼각함수에 있는 도형관련 여러가지 성질에서 3번째 원에 그려진거는 어떻게 유도되는 건가요? 어디에 나오는지 알려주실 수 있나요?
문제풀다가 알게 된 개념입니다!
유도 과정은 내일 중 댓글 남기도록 하겠습니다ㅠ
감사합니다
들었던 인강강사님 잇으시나요?
아뇨 인강은 안 듣고 수학학원 1군데만 다녔습니다
나도 .....
감사합니다
88점에서 점수가 오르지가 않는데 이러신적 없었나요ㅜㅜ 미치겠습니다
으음... 제 게시물중에, 제 실모 점수들 공개해 놓은 글이 있거든요.
아마 그 글 보면 알 수 있듯이, 저도 80점대 점수를 꽤 자주 받았었어요.
만약 88점을 맞는 이유가, 시험지에서 제일 어려운 문제를 못 풀어서 그러는 거라면 n제를 통해 어려운 문제 푸는 연습을 더 하는 걸 추천드리고,
예상치도 못한 실수 때문에 88점이 나오는 거라면, 실수하는 포인트를 파악해서 시험지를 풀 때마다 의식적으로 고치려고 연습하는 걸 추천드려요!
ㅠㅠ 힘내세요!
자료출력 오렌지프린트 ㅆㅆㅌㅊ
밥보
예??? 이상해요...
이상하셔서 팔로우할까 고민했는데 게시물은 더 이상해서 포기했어요.
오해예요!!!!!