[이동훈t] 수학 22번 구조 분석
게시글 주소: https://a.orbi.kr/00065221757
2025 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 화제의 문제
수학 공통 22 번에 대해서
ssul을 풀어볼까 ...
하는데요 ...
그 전에 ...
2025 이동훈 기출문제집
교사경 수학1+수학2, 미적분은
이미 판매 중입니다. (아래)
-단품
2025 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 34,000원 (오르비 할인가 30,600원) 판매중
2025 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매중
-세트
2025 이동훈 기출 수1(교)+수2(교)+미적(교) 56000원 판매중
(각 과목당 약 18000원 꼴)
판매 사이트는 아래
아래의 세 타이틀은 11월 27일(월)에 예판을 시작할 예정입니다.
(세트 상품도 함께 예판을 시작합니다.)
- 단품
2025 이동훈 기출 수학Ⅰ 평가원 편 (+실전이론 포함)
2025 이동훈 기출 수학Ⅱ 평가원 편 (+실전이론 포함)
2025 이동훈 기출 미적분 평가원 편 (+실전이론 포함)
-세트
2025 이동훈 기출 수1(평)+수2(평)+미적(평)
2025 이동훈 기출 수1(평)+수2(평)+미적(평)+수1/2(교)+미적(교)
아래의 두 타이틀은 12월 6일(수)에 예판을 시작할 예정입니다.
(세트 상품도 함께 예판을 시작합니다.)
- 단품
2025 이동훈 기출 확률과 통계 평가원/교사경 편 (+실전이론 포함)
2025 이동훈 기출 기하 평가원/교사경 편 (+실전이론 포함)
-세트
2025 이동훈 기출 수1(평)+수2(평)+확통(평/교)+수1/2(교)
2025 이동훈 기출 수1(평)+수2(평)+기하(평/교)+수1/2(교)
사정상 2~3일 빠르게 또는 늦게 예판이 시작될 것입니다.
최대한 빠르게 시작할 수 있도록 노력하겠습니다.
그리고 ...
2024 수능 수학 각 문항별 분석은
2025 이동훈 기출문제집 전 타이틀 출시 이후에
진행하도록 하겠습니다.
일단 올해 수능 총평은 ...
(1) 수능 답게 잘 만들어졌다.
(2) 작법(작풍)의 변화가 없다.
(실험적인 문제 없음.)
(3) 간접 출제 범위 (중등, 고1)에 대한
비중은 작년 수능과 엇비슷하다.
(개인적으로는 ...
이 부분에서 실험적이면서도
강렬한 문제를 기대했는데
아마도 최종 과정에서
싸악~ 제거된 거겠지.)
(4) (여전히) 옛날 기출도 중요하고,
최근 기출도 중요하고,
교육청, 사관, 경찰 기출도 중요함.
예를 들어 22번은 올해 고2 교육청 기출에서
영감을 받은게 아닌가 합니다.
아래서 설명하겠지만.
(5) 실전이론 여전히 중요하다.
미적분 30번은 변곡접선을 소재로 하고 있고,
이에 대한 연습을 한 수험생이 많이 유리합니다.
그리고 올해는 삼도극, 삼차함수의 비율관계, ...
등등 ...
볼멘소리 나올까봐
싹~다 판도라의 상자에 봉인시켰는데 ...
내년도 정치적 상황에 따라
(총선, 부동산PF, ...)
카와이한 악귀들이 대방출 될 수 있으니 ...
2025 수능 대비하는 분들은
가리지 말고 다 풀어야 겠습니다.
아니 ... 뭐 ...
올해 수능 당황스러웠다고
말하는 분들도 있는데
지금 돌아가는 상황보면 ...
내년은 더 당황스러울 가능성이 높아요 !?
다- 풀어야 합니다.
아멘.
이제 ...
22번 보시면요.
난 이 문제 보자마자
아래 문제 생각나던데.
올해 고2 9월 문제인데요.
이산으로 주어진 고2 문제를
연속으로 바꾸면 수능 문제가 됩니다.
이산과 연속은 고등학교 수학 교육과정에서
반드시 익혀야 하는 중요한 개념이고 ...
이를 문제 제작에 활용한 경우라
볼 수 있겠습니다.
22번의 짧은 풀이를 함께 보시면 ...
이 문제를 읽고 나서 다음과 같은 과정을 거쳐야
기출 학습을 제대로 한 것입니다.
(0) 문제에서 주어진 조건의 대우 명제를 쓴다.
(1) 두 점
(-1/4, f(-1/4)), (1/4, f(1/4))
이 주어졌고, 함수 f(x)는 연속함수이므로
구간 (-1/4, 1/4) 에서의
그래프의 개형을 먼저 생각한다.
(미적분에서 집합은 풀이의 단서가 된다고
저는 항상 강조합니다.)
(2) f(0) > 0, f(0) = 0, f(0) < 0
의 세 경우로 나누고
귀류법+사이값 정리로
f(0)=0 임을 보인다.
좀 더 자세히 설명하면
f(0) > 0 이고,
x->-inf일 때, f(x)->-inf
이므로
사이값 정리에 의하여
함수 f(x)의 그래프는 x축과 만난다.
이때, x절편의 값이 0- 에서 -inf 까지 변화시키면
맨 위에 (0)을 만족시키지 않음을 확인할 수 있다.
마찬가지의 방법으로
f(0) < 0
일 수 없다.
따라서 f(0) = 0 이다.
함수의 그래프의 개형을 그릴 때,
x절편, y절편을 찍는 것이
도함수/이계도함수/점근선에
우선함을 평가하고 있음.
(3) (2)와 마찬가지의 방법으로
함수 f(x)의 x절편을 변화시키면서
가능한 경우를 찾으면
위의 풀이처럼 세 가지의 경우가 나온다.
1번은 당연히 아닐꺼고
(과잉 조건일 가능성이 높으니까.)
2번 또는 3번이 답인데.
어느 쪽을 먼저 하는가에 따라서
계산 시간 30초 정도를
단축할 수 있다.
이 문제는 귀류법을 이용한
그래프의 개형 그리기에 대한
전형적인 문제로 ...
작법의 관점에서 새로움이 없습니다.
그러므로
문제 풀이에도 새로움이 없습니다.
자 ... 그러면 ...
22번은 킬러 일까요 ?
이 문제는 킬러가 맞습니다.
왜냐하면 올해 수능 30 문제를
난이도 순으로 쫙 나열하면
가장 어려운 문제가 될텐데.
가장 어려우니 이 시험의 킬러이지요.
최상위권까지 변별해야 하는 시험에서
킬러가 없다. (또는 없애야 한다.)
라는 가정 자체가 잘못된 것이니까요.
다만 과거 수능에서 출제된 ...
야수성 넘치는 킬러와는
비교하기 힘들 정도로
맥이 많이 빠진 킬러라고 생각합니다.
수능 치루신 모든 분들 수고 많으셨습니다 !
.
.
.
다음주에는
2025 이동훈 기출문제집 고1 수학 PDF가
공개되니 많관부 !
ㅊㅊ
2025 이동훈 기출
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
또 나를 찾지 말고 살아가라
-
제 아이디 입력해주시면 추천해주신 분과 제게 모두 만원권이 증정된다고 합니당 아이디...
-
내맘대로 자대고 4
쭉 긋고 쓰지
-
예쁜여자vs고능아의대생 10
다시 태어나면 뭘로 태어나고 싶음? 후자는 와꾸 빻음
-
헬스터디보면 확통은 맨날 거의다맞추던데 재호가고수인거임 확통이쉬운거임 둘다인건가 신기하네
-
여기있는 현역 혹은 그 이하들이 나보다 잘한다는걸 깨달았을 때
-
수능 국어 기본기 공부는 매3시리즈 국어가 좋음? 원픽이 좋음?
-
ㅇㅇ 연계 독서 중에 그게 제일 꽃같은 친구 같음.
-
양치기소년이 되.
-
국어는 강기분 지금 하고 있구요 수학은 학원+인강으로 병행 합니다 영어 또한...
-
나 이래도 괜찮은걸까
-
2주동안 자살할게 라고 말함 zzzz ???: 이거 비문학이네
-
수과탐에 투자하려는데 주말에 문학 좀 보고
-
저기 지방 ㅈ반고 가면 유학? 의대? 이런 얘기 나오지도 않음
-
글이안읽힘..
-
어차피 평소에 얼마나 어려운 실모를 풀더라도(막 1컷 60점대의 비정상적인 실모만...
-
질문 받음 15
죽을 때가 다 됐나 오래 전에 저 세상 간 사람들이 댓글 다는게 막 보이네 고졸...
-
작년에도 막판에 창선감의록 냇던거 같은데
-
애니프사 집합 16
왜 왔음
-
제가 작년부터 스트레스 받을 때마다 멀쩡한 어금니 하나를 타겟으로 삼아 계속 흔드는...
-
겨울때 사야지
-
단어는 일단 5일동안 워드마스터 한 번 돌릴거고 자이스토리 유튜브 보면서 풀고...
-
수능에서 한자리수 틀리는사람중에도 메인글 글쓴이만큼 hypsm대학원 컨펌 직전?까지...
-
스토리 좋아요 6
특정한 내용의 스토리에만 좋아요 누르는 건 무슨 의미인가요? 그냥 별 뜻 없겠죠?
-
확통 원래 30번 까지 다 맞는 거 흔친않죠? 개잘하네…
-
있음? 기숙사나 자취방에요 ㅇㅇ
-
물1 선택자분들 10
어려운 역학 1-2문제 스킵하고 나머지 다 풀고 돌아와서 푸시나요 아니면 그냥...
-
공간관이랑 패러다임 이거 가나형으로 내주면 될듯
-
물리 개싫음 11
하다보면 물리니까
-
신촌 ㅆ 2
새벽에 고함좀치지마
-
동그란 솥뚜껑같이 생긴 불판에 삼겹살 ㅈㄴ 굽고 마늘 배추 깻잎 상추 기름장 쌈장...
-
정상임…? 그 와중에 화작은 쉽고 독서문학에 힘 빡 준 시험지여서 시간 운용이 어려움
-
선지랑 보기랑 반대되는말 써서 틀리게내는게 대부분인가요?
-
작년9평이 물리긴했는데
-
시간이 아깝다 풋풋한 20살 초반을 다 날린거같아서 씁쓸하다 올해가 마지막 결과와 무관하게
-
올해가 비교도 못 할만큼 어렵네요ㅜㅜ
-
수능러들은 수능 파이팅하시고 유학러들은 EA/ED(이왕 갈 거면 RD보다야...
-
메인글 보니까 괜히 생각이 많아지네요 벽에 머리 박고 잠이나 자야지
-
과학기술이나 사회 하나 버려도 1등급 뜨는경우 꽤 잇나요?
-
분명 성적은 올랐는데 어떻게 작수 진학사 돌린거랑 라인이 비슷하냐
-
캐시남아서 살려는데 머가괜찮나요
-
ㅈ같네 진짜
-
시간없어서 제발....ㅠㅠ
-
하기 싫은 공부 = 취업 잘됨
-
일단 저요...6모 11232인데...국수 운빨로 1뜬거같기도 하고 ㅠㅠ 하...자신감올리는법좀
-
내일은 오르비 들어오면 안 되겠다. 들어오면 스포 당할 듯
-
어느정도 떠야할까요
-
일본가고싶네 1
거주목적으로
-
신이 양심을 가지고 있다면
-
f(x)가 증가하면 모든 x에 대하여 f'(x)>=0이다 8
제목의 역도 성립 하나요? 누구는 맞다고하고 누구는 아니라고 해서 충돌일어났습니다
내년도 정치적 상황에 따라
(총선, 부동산PF, ...)
카와이한 악귀들이 대방출 될 수 있으니 ...
이젠 수능도 정치 눈치를 이렇게 심하게 봐야하는 상황까지 온게 끔찍하네요...