강사 중 제대로 푸는 것을 본적이 없는 문제
게시글 주소: https://a.orbi.kr/00066299662
[5탄 문제는 어떻게 읽어야 하는가?]
아직도 이 문제를 제대로 푸는 사람, 강사, 인강을 본 적이 없습니다. (있다면 제보 부탁드립니다)
이 문제를 제대로 풀지 못 하는 이유는 아마 문제의 구조를 잘 모르기 때문이라고 생각합니다.
거의 모든 해설은 박스 밑에 있는 조건으로 먼저 식을 처리하고, 좌표평면에 y=x, y=-x 그래프를 그리고 케이스분류(?) 같은 것을 하며 그래프를 그리다가, 삼차함수를 잘 갖다가 접하게 붙여, (운이 좋으면) 빠르게 개형을 찾아 풀이합니다. 잘 되던가요?
이것이 과연 평가원이 의도한 풀이일까요?
박스 밑에 있는 조건은 식을 간단히 하기 위한 조건으로 준것일까요? 그런 것을 평가하려고 하는 기관일까요? 심지어 박스 위도 아니고 아래에 줬는데?
문제로 학생들의 능력을 어떻게 평가할까 고민 하는 것을 직업으로 가지고 있는 연구원들과 그 기관인데... 너무 하지 않나요?
(1) 문제 잘 읽기
우선 이 문제는 최고차항이 양수인 삼차삼수가 (가),(나)의 조건을 만족시킵니다. 그리고 f(0)=0과 f'(1)=1일 때, f(3)을 구하라는 묻는 것이 있습니다.
(1-2) 문제 잘 못 읽기
(가) 조건에서는 f(x)-x=0이 두 근을 갖습니다. 그리고 (나)조건을 봐야겠죠? 아마 여기서 거의 대부분 문제를 잘 못 읽습니다. 가, 나 조건을 함께 봐야 한다면 문제 형식은 저런식으로 주지 않았을 겁니다.
대부분은 문제를 이렇게 함부로 고쳐서 읽는 것 같습니다,
사실 심지어 이렇게 읽은 풀이도 많습니다.
알아서 복잡하게 만들고 있다... 이런 느낌입니다.
(2) 조건 해석하기
(가) 조건에서는 f(x)-x=0이 두 근을 갖습니다. 그리고 나서 (나)조건을 보겠습니다.
(가) 조건에서 우리는 f(x)-x가 두 근을 갖는다고 보았을때 식을 만들 었을 것이고 그 다음 (나) 조건을 봐야합니다. 그렇다면 f(x)-x=g(x)라고 만들었으니, (나)식은 g(x)=-2x 의 근이 두 개라는 말이 됩니다.
(3) 추론 연산하기
이제 g(x)와 -2x와의 위치관계를 보면 됩니다. 그렇다면 밑에 있는 조건이 왜 f(0)=0이고 f'(1)=1이라고 주었는지 알 수 있을 겁니다.
이해가 되시나요?
f(0)=0 ----> g(0)=0
f'(1)=1 ----> g'(0)=0
그래프가 한 번에 찾아 지시나요?
물론 이 문제는 가르치는 사람의 입장에서 열심히 분석해야하는 문제입니다. 수험생 분들이 이런 평가원의 의도를 찾으려 한다면 언제나 방향성을 잡아줄 선생님이 필요할 겁니다. 평가원 기출 문제는 엄청난 보물입니다. 이런 문제가 30년치가 쌓여있는데... 문제를 풀이하고 단순 소비하는 형태로 지나치지 않았으면 합니다.
수험생 여러분 항상 응원합니다.
1탄 [글의 시작 - 묻는 것에 따라 어떻게 계획하고 행동을 할 것인가 생각하자]
2탄 [해설지가 뭐 이래...? 해설이 아니라 계산지 아닌가....? (feat. 수능 13번)]
3탄 [수능 5번, 맞힌 문제로 공부하기]
4탄 [추측과 정당화, 수능 12번 (부모의 마음을 가진 평가원)]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서울대 문과 1년 정원 1200명 중 로스쿨 입학인원 400명 sky로 180명...
-
헤헤 9
헤헤
-
그냥거기서 대학원가서 문학연구하고싶다
-
그동안 감사했습니다 10
눈팅을 자주한 유저입니다 여러 선생님들의 공부꿀팁 감사합니다 지인선 선생님의...
-
김동욱 0
자러감
-
아니 기본 텍스트편집기가 코딩기능까지 있다고???
-
어제도 투데이 196이었나 200도 못 찍었는데 이제 ㄹㅇ 다들 공부하러간듯
-
나를바라볼때 눈물 짓 나 요 마주친두눈이 눈물 겹 나 요 내가정말젛아하는가사
-
해보고싶은데 궁금하다
-
자사고 내신대비용 공부인데 개념 전체를 보고 가는 것보다 1,4단원 심화를 더...
-
계엄이 부른 ‘호황’, 날뛰는 정치 유튜버들… 슈퍼챗 개수 대비 수익 세계 1위 [뉴스+] 7
계엄 이후, 정치 간판 유튜버 역대급 수입 평균 슈퍼챗 금액 2만원 넘고, 동시...
-
학원 학생 한테 주려고하는데... 제가 만들면 되긴하는데 글씨나 그래프 그리는게 좀...
-
경멸 라봉이
-
어떤분이 서울대랑 연고대 차이에 대한 글을 올렸는데 댓글이 난리가 났네요 서울대랑...
-
부모한테 치여살아서 집에도 들어가기 무서워할정도로 부모한테 트라우마 있어서 2시까지...
-
다들 행복해졌으면 좋겠어요...
-
이 가능한 세계선이 있을까..
-
프린트당.. 0
프린트당 애용하던 수험생인데 혹시 프린트당 폐업한거냐 어케 된거냐 프린트당 대신...
-
안녕하세요 9
휴르비끝냈어요
-
혼자 제주여행 가려는데 11
렌트카해야하려나?
-
돈 최저 받아도 되니깐 고등수학 가르치는 일 진짜 해보고 싶네 즐겁게 일할 듯
-
코잘자
-
강원의 지역 0
여기 진학사 최종컷 왜이리 낮음? 점공도 14명 밖에 안들어온거면 펑인가..?
-
하...
-
솔로지옥4기 쇼츠 누르자마자 이시안 나오네 ㅋㅋㅋㅋㅋ 프듀때 루머 무대 개좋아하는데...
-
수특을 벅벅
-
확통1틀보다 압도적으로 미적 3틀이 어려운지 궁금합니다 확통대신 미적할까...
-
남자 커버는 당연 구루타밍이고 여자는 이사람이 가장 잘부르는구같음
-
팁 받아서 신남 1
편의점 알바로 팁을 받을 줄은 상상도 못했
-
[속보] 美국방장관 지명자, 북한을 “핵보유국”으로 지칭 4
피트 헤그세스 미국 국방부 장관 지명자는 14일(현지시간) 워싱턴DC에서 열린 상원...
-
사진수정이 안되길래 다시올림
-
국어말고 있나요? 영어는 안되는거 알고있고 탐구나 수학.. 궁금합니다
-
중앙대랑 서성한 4
중대 ict기준 서성한이랑 입결겹침? 평생을 중낮공은 겹친다고 생각하면서 살아왓는데 너무 중훌인가
-
이런 류의 문제는 애초에 빼먹는걸 의도하고 만들기때문에 공부하는사람입장에선...
-
210630 2
이거 주제가 이후의 공통킬러에서 나온 적이 있어서 그런가 부드럽네
-
24아이디어 새책 있는데 26이랑 좀 다르겠죠? 표지도 똑같고 수학이라서 많이...
-
스벅 자허블 그란데 사이즈 기준 허니자몽소스 6으로 놓고 마시니까 딱 맞음
-
예상 1컷이 83인데 ㅋㅋㅋ
-
진짜 갑자기 기억안나는데 수영장에서 그럼 위에는 벗고 바지가 0
수영복이이엇나 팬티엿던거같기도한데
-
고2교육청보다 선지가 더 잘 뚫리고 근거가 명확한 느낌인데 교육청-평가원 차이인거겠죠?
-
원서쓰고 점공안하면 사형수능끝나고 가채점안하면 사형허위표본 등록시 사형이렇게 세가지...
-
작년버전이랑 같은 방식으로 만든게 아닌건가요?? 시간차때문에 다르게 나오는거말고...
-
메일로 신분증이랑 전번까지 해서 한 3번 보냈는데 아직도 수정이 안됨.. 에피 받아야하는데..
-
심찬우 생글생감 2
심찬우쌤 생감은 언제 나오나요
-
갑자기 오랜만에 수영장가느넫 어릴때 갓어서 기억 안나느데 옷갈아입을때도 팬티...
-
올수 22번이네 아오 ㅅㅂ
-
피드백중인데 아직도 몰르겠음
-
'우울증은 바쁘면 낫는다, 바쁘면 우울할 시간도 없다' 이 말 동의하시나요? 25
어떻게 생각하시나요?
팔로우 박습니다
감사합니다.
아마 강윤구 강사라면 저렇게 풀듯요. 방정식을 풀 때 고정곡선 = 직선/상수로 고치는걸 강조하는 사람이라 f-x를 고정곡선르로 두고 0과 -2x를 직선상수로 두지 않을까? 싶네요
근데 푸는 영상은 모르겠습니다 ㅈㅅㅎㅎ
고정 곡선과 직선 두개로 다들 풀더라고요. 아마 평가원 기출이니 대부분의 선생님들 책에 해설이 있을 것입니다. 한번 확인 해보겠습니다. 감사합니다. 혹시 확인을 해주신다면... 사례하겠습니다.
호
재밌어 보이길래 풀어봤습니다 ㅋㅋㅋㅋㅋ
해설 강의 찾아보시면 더 재밌을 겁니다
정병호