241128(미) 수식 풀이
게시글 주소: https://a.orbi.kr/00066330625
일단 "모든 양수 t에 대하여 x에 대한 방정식 f(x)=t의
서로 다른 실근의 개수는 2"라는 정보와 "모든 실수 x에 대하여
f(x)>=0"이라는 정보, 그리고 "실수 전체의 집합에서 연속인
함수 f(x)"라는 정보와 x<0에서 주어진 f(x)식으로부터
다음과 같은 상황을 떠올릴 수 있어야 한다.
대충 f(x)의 그래프가 x<0에서는 감소하고 구간 [0, p]에서는 (p>0)
상수함수의 그래프를 보이다가 x>p에서는 증가하는 상황
2015개정교육과정 상 정적분은 닫힌 구간에서
연속인 함수에 대해 논하므로
다음의 두 함수를 정의해주자.
그러면 함수 g(t), h(t)가 정의된 방식에 따라
다음의 두 항등식을 얻을 수 있다.
이를 이용해 닫힌 구간 [p, 7]에서의 적분에
치환을 섞어보자! (치환적분법, 역함수를 이용한 치환)
부분적분법은 두 함수가 곱해진 꼴의 함수를 적분할 때
하나를 미분, 하나를 적분한 새로운 함수를 적분하는 상황으로
적분 상황을 바꾸어주는 방법이다.
x>0에서의 f(x) 식을 아직 알 수 없기 때문에
f(7)값을 직접 구할 수는 없다.
하지만 주어진 관계식 2g(t)+h(t)=k (t>0) 을
활용해보면
x=7과 x=(k-7)/2에서의 함수 f의 함숫값이 일치함을
확인할 수 있으므로 x<0에서의 f(x) 식을 이용하여
f(7)값을 구할 수 있음을 알 수 있다.
이제 주어진 관계식을 이용해주면
구간 [0, f(7)]에서의 함수 p(t)의 적분값만 구해주면
주어진 조건식의 좌변을 정리할 수 있다.
구간을 표기할 때 [-3, 0]처럼 해야지 [0, -3]은 안된다고
알고 있긴 한데 편의상 이 정도는 넘어가자
중간에 d(4x^2)=8xdx는 그냥 내가 쓰는 표현인데
대충 미분(differentiation) 말고 미분(differential)에 관한
생각을 이어와 dy=f'(x)dx 표기를 살려
치환적분법 적용할 때 표기를 단순화하는 방법이다.
어디서 배운 건 아니고 치환적분 문제 풀다가 만들었는데
떠올리기 어려운 것은 아니라 사용하는 다른 분들께서 계실 수도!
이제 조건식의 우변에 위치한 정보를 살리면
k값 후보가 2개 나오는데 아까
h(t)=7일 때 g(t)=(k-7)/2이었고 g(t)<0이므로
k-7<0이다. 따라서 k=5로 확정된다.
답은 2번이다.
+ 아니면 2g(t)+h(t)=k (t>0)로 x>0에서의
f(x) 식을 직접 구할 수도 있는데
2g(t)+h(t)=k 와 f(g(t))=f(h(t))=t 적용하면
각 구간 별 식을 논리적으로 작성해낼 수 있다.
직관적인 상황 파악을 위해 h(t)>0로 표기했지만
f(g(t))=t 에서 g(t)<0이므로 2g(t)+h(t)=k,
h(t)=k-2g(t)에서 h(t)>k임을 바로 확인할 수 있다.
k=5 대입하면 함수 f(x)의 그래프는 다음과 같다.
그럼 바로 f(9)=2x(9-5)xe^(9-5)^2,
f(8)=2x(8-5)xe^(8-5)^2 구해 답 낼 수 있다.
++ 이상입니다, 다만 저는 개인적으로
이것을 대략적으로 생각해내서 t값이 조금 증가할 때
x<0에서 주어진 f(x) 식에 따라 g(t)의 변화를 생각하며
h(t)의 변화를 따라가보는, 그렇게 하여
x>0에서의 f(x) 식을 추론해보는 사고 과정이
현재로서 가장 현장에서 시도해볼 만한 사고 과정이라고
생각하고 있습니다.
읽어주셔서 감사드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
반 알로는 택도 없네 12
앞으로 잠 안 오면 한 알 그냥 먹어야지....
-
이 정도면 걍 겨울 아님? ㅋㅋㅋㅋㅋ
-
분석할 수 있는 역량은 나름 괜찮은 것 같은데 타임어택에 항상 약한 게 문제네..
-
바로 자야지
-
올해 진짜 왤케 뭔가 애매하지... 이거다 싶은게 진짜 하나도 없네요
-
옛날에 내가 대충 휘갈겨서 막 냈었는데 승인된 레어들 다시 보니까 반가우면서...
-
본인 가끔씩 잠 안오면 유튜브에 박승동 강의 틀어놓고 잘 때 있음. 학교선생님 그...
-
현우진 차영진 호훈도 인정한 Goat.
-
덕코 어케 버는 거더라
-
191130 정도의 문제는 미적 30에 나올 수 있을까요? 9
그래도 어렵나
-
재수 수능 조지고 논술 다 광탈해서 삼수 확정났을때쯤 인기 많았던 노래라 한동안 이...
-
아무나
-
이거 5개 다틀리면 낮4부터 시작임
-
고3때는 분명 고대 바의공 성대 글바메만 가도 좋겠다 이랬는데 ㅠㅠ
-
수학황분들 질문 12
이거 답 몇번인가요
-
Oz모가 수능 난이도 정도인가요? 최저때메 1이 필요한데 요새 너무 점수 안나와서...
-
원윤태 학생 제발 정신 좀 차리세요
-
끌끌
-
80분 95점 문학-5 독서(34분 30초) 쉬웠음 손가락 걸기 안하고 모든 선지...
-
제법 젠틀해요
-
어땟음 특히 국어
-
솔직히 BIS같은 경제고난도나 물화생과학 재재로 나오면 그냥 나만 어려워서 던지는...
-
안녕하세요 2
안녕하세요
-
마법의소라고동님 0
올해는탐구11을주세요 씨ㅡㅂ랄줄때됐잖아
-
애들 단체로 다 쉽지않음? 할만하던데 헤겔 그거 EBS 그대로 나오지않음? 1컷 한...
-
숨은 명곡 4
안유명하진 않지만 덜유명한 노래
-
고우시네요
-
교수님 진짜 감금 해버릴까 이새끼가 시험 끝난지 2주됐는데 지혼자 시험을 쳐보네 아오 진짜
-
내일부턴 진짜 일찍잠 ㅜㅜ
-
생2 답변 겁나 대충해서 오르비 공론화 되었던 ㅋㅋ
-
근데 질문하는 사람도 존나 꼽주긴 해가지고 답변 띠껍게 하는 거 알겠는데 걍 그 상황이 개 웃김
-
죽어야지
-
17 수능 국어도 나름 어려웠는데 1교시 끝나고 그래도 다들 좀 얘기하고 그랬는데...
-
EBS 핵심 파트 복습 기출 복습 개념강의 핵심파트 복습 실모 N제 까다로웠던거...
-
라고 하면 안되겠죠?
-
몰라 2
아 아무것도 안 할래
-
이감 후반회차 난이도 괴랄해서 선별해서 풀고가려하는데 평가원과 적합했다 혹은...
-
원래 시험이 다음주에 한 번 더 있는데 올해는 반수생들이 많을 것 같다면서 다다음주에 치기로 하심
-
내가 쳐본시험만 토대로 말하면...
-
학교문법이 싫다 4
좀 개정하자
-
레어 구매 확인 19
과연...
-
2회부터 10회까지 남았는데(...) 혹시 푸시면서 좋았다 하는 회차 4개정도만...
-
음..
-
그 사람이 화장실 갔을 때 손목시계를 슬쩍 한다!
-
덕코 0이어도 상관없는데
-
탐구는다찍고 3
미적분1등급이나받아보고싶다
-
내신에서 개념은 어느정도 끝내놓은 상탠데 하루에 몇 시간 씩 해야 고정1 뜰 수 있음?생지러임
-
아이민이 세 자리이신 분 가끔 보이는 듯 저번에는 메인글에 두 자리 분 오셨지 않나
와! 스텔체스 적분 아시는구나!
맞다 d(f(x))=f'(x)dx 이거 용어가 있었죠!! 잊고 있었네요 감사드립니다 형님
통일~연세~~
예전 23.11.22 수식 풀이 칼럼 정말 도움되었습니다 선생님! :D
도움이 되었다니 다행입니다! 231122 수식 풀이의 경우 제가 발견한 것은 아니고 어떤 의대생 분의 풀이를 보고 공부하다가 '오 이건 더 많은 수험생 분들께서 공부해두시면 좋겠다' 싶어 수식편집기 이용해 정리해보았을 뿐입니다.
수학적 재능이 없다고 스스로를 생각하는 사람으로서 항상 '멍청한 풀이'를 찾길 좋아하는데 231122에서 g(x)를 구하는 것만큼 1차원적인 사고로 답을 낼 수 있는 풀이를 아직 찾지 못했다 생각하여 요새도 심심할 때 식 전개해 구해보곤 하네요 ㅎㅎ
새해 복 많이 받으시기 바랍니다, 올 한 해도 행복한 순간들로 채워가셨으면 좋겠습니다!
+ 마지막에 g(t)값 변화에 따른 h(t)값 변화에 초점을 두어본다는 맥락에서... 현장에서 문항 처음 봤을 때 주어지 관게식 보고 y=-2x (x<0)와 y=x (x>0) 의 그래프를 그려보셨다는 다른 분을 발견했습니다!
확실치 않지만 t값 변화에 따른 g(t)값 변화, 그리고 그에 따른 h(t)값 변화를 살펴보아 x>0에서의 f(x) 개형 혹은 식을 대략적으로 유추래보라는 것이 출제 의도가 아니었을지 싶습니다.
마치 2023학년도 수능 22번이 평균값 정리에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세울 수 있었지만, 그냥 f(x)=x^3+ax^2+bx-3 두고 수식으로 밀어서 g(x) 식을 작성해낼 수 있었듯이
2024학년도 수능 미적분 28번은 항등식에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세워볼 수 있었지만, 그냥 주어진 정적분을 x=h(t)로 치환한 후 2g(t)+h(t)=k 이용, 그리고 다시 g(t)=x로 치환한 후 8x*e^{4x^2}를 치환적분을 통해 계산하여 k값을 결정할 수 있었던...
그러한 비슷한 맥락에서 바라볼 수 있지 않을까 하는 생각이 듭니다!