극좌표(polar coordinate)를 이용한 치환적분
게시글 주소: https://a.orbi.kr/00066457810
2차원에서 어떠한 점의 위치를 설명하려면
어떻게 해야할까요?
적당한 기준을 세운다면 우리는
점의 위치를 설명할 수 있을지 모릅니다.
대표적인 방법이 데카르트 좌표계, 바로
우리가 흔히 접하는 직교 좌표계입니다.
원점과 x축, y축을 설정함으로써 우리는
그림 상의 점 A, B와 같이 특정한 점의 위치를
깔끔하게 설명해낼 수 있습니다.
그런데 직교 좌표계 외에도 이렇게
기준을 잡아 평면 상의 점의 위치를 기술할 수 있는
대표적인 방법이 하나 더 있습니다.
바로 극 좌표계입니다.
원점을 O라 할 때 각 AOD의 크기를 alpha,
각 AOB의 크기를 beta라 한다면 우리는
방금 봤던 두 점 A, B의 좌표를 각각
다음과 같이 나타낼 수 있습니다.
r은 원점으로부터 각 점까지의 거리를,
@는 시초선으로부터 동경까지 시계반대방향으로
잰 각의 크기를 뜻합니다.
이 r과 @값에 초점을 두고 다시 직교 좌표계에서
점을 나타내어 보면
이렇게 나타낼 수 있을 것임을
생각할 수 있습니다.
즉, 반지름의 길이가 r인 원 위의 점으로
주어진 점을 바라보고 일반각 하나를 잡아
직교 좌표계의 점을 생각해볼 수 있다는 것이죠!
극 좌표계를 이용하면 2변수 함수의 적분을
다음과 같이 작성할 수 있습니다.
이제 1변수 함수를 다룰 때의 치환적분법을 다음과 같이 생각해보고
아직 제가 서술하기엔 어려운
transformation from the uv-plane (polar coordinate)
to xy-plane (Cartesian coordinate) 와
the Jacobian of the given transformation 에 관한
이해를 갖추면
극 좌표계를 이용한 치환적분을
일반화할 수 있습니다!
이제 이를 이용해 확률과통계에서 학습하는
정규분포를 따르는 연속확률변수의 확률밀도함수를
적분해봅시다!
이를 표준정규분포 N(0, 1^2)을 따르도록 해주면
확률밀도함수 g(x)를 얻을 수 있습니다.
현 교육과정 상 확통에서 표준정규분포를 따르는 연속확률변수의
확률밀도함수에 관한 위 성질은 배우는데 증명을 하지 않아
앞서 다루었던 다변수 함수에서의 치환적분을
적용해 해결해보고자 한다면
영상 속 과정을 따라 I값을 구한 후
루트 pi로 나누어주시면 됩니다.
현재 2022 개정 교육과정 상 공통수학2에
선형대수학의 기초인 행렬이 들어왔으니
2028 개정 교육과정 즈음엔 극 좌표계와
복소 평면도 들어와 학생들께서
2차원 평면에 대한 보다 다각적인 이해와
나아가 치환적분의 느낌을 다변수 함수에도
적용해보실 수 있을 그러한 기회가 있었으면 좋겠습니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사연보고 추첨 90씩 두과목이면 현강비 한두푼 아닐텐데 쿨하게 포기하네
-
굿모닝 10
-
처음도 아니고 수능 일주일 남기고 이러니까 화가 ㅈㄴ 남 그냥
-
4 1
군수생 달린다 재활하기 가장 만만한 생윤부터 공부하는 걸로...
-
그놈이 왔구나
-
이거 진짜 루틴된 것 같은데 족비상이에요,,,
-
사설벅벅벅벅하다가 평가원 푸니까 모래주머니 풀은 느낌 1
엿같은 계산도 배배 꼬아놓은 표현도 나를 막을 수 업다. 이몸, 최강.
-
내 다리털 땜에 내가 간지러움;;
-
나 7시 45분에 기상함 이게 최대야 어무이가 밥 억지로 먹여서 이제 나갈준비하는중
-
비약이 있으니까 약사 할까
-
물2 개념 강의 누가 ㄱㅊ았나요? 보통 얼마나 걸리나요?? 물2는 지금 친구가 대성...
-
수능이라고 세상에서 없애버리고 싶은데 보면볼수록 자꾸 또 보고 싶고 안보면 자꾸...
-
공못광광울 9
제발 수능까지 처참하진 않았으면 좋겠는데
-
승무원학원 그런거 안다녀도 성적 개높으면 붙여줌?
-
진짜 개춥네 2
ㄷㄷㄷㄷ
-
지금이라도 전부 다 보는게 그래도 좋을까요? 운문 위주로 집중적으로 볼까요
-
뭐로 주지 쪼꼬 줄까 싶은데
-
전역하고전역콘열어죠
-
김종익 잘노기 들었구 파이널 모고 풀다가 너무 어려워서 유기했습니다... 홉로루...
-
페레로N 5
너도N수야?
-
내성 생겨서 효과 없다 말고 역으로 작용하는 것도 가능한거임?
-
나도 오빠좋아함 12
나는 정상이라고생각해요. . 집에 동거도하고 밥도먹고 잠도 같이 잠 ㅇㅋ? 군대도...
-
왤케 덥지
-
내가 본 사설 중 가장 답이 깔금하게 떨어지도록 설계된 거 같음
-
나님 기상 0
안녕 세상아!!!!!!
-
이익사회 공동사회 뭐 이런 거 나오고 갯수 세는거 약한데 어떤거 해야하는지 추천해주세요!
-
수학 9모 88이었고 10모 80인데 (각 실수 1개) 예전엔 계속 76...
-
진지하게 23수능 준비할때보다 독서가 빡빡한거같은데 뭘 어케해야되지 원래 경제 법...
-
지금 의욕도 잃고 뭘해야할지도 모르겠고 배모 오지모는 왜자꾸 2,30점대에서...
-
저게뭔데 ㅋㅋㅋ
-
2배속으로라도 강e분 들을까요? 혼자 정리하려 했는데 분량이 너무 많아서..
-
오늘도 파이팅. 몸관리 잘하자.
-
다들 차렷. 1
학원으로 갓! 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘
-
조이는 보이가!
-
얼버기 5
D-8
-
킬캠 10점이 뭔데 씹덕아
-
이감 중요도 c 6
C에도 없는 작품은 안봐도 되겠지..?? 중요도에 아예없는작품 나온적 있나
-
얼버기 3
D-8 화이팅!!!!
-
늦버잠 2
어차피 내일 오후 수업이라 괜차늠 ㅋㅋ
-
시험지 꺼내거나 파본검사할 때 눈풀하면 부정행위인가요
-
현실적으로 1
화미생지 기준으로 96 96 2 89 89 면 어디 적정라인임? 이과기준으로
-
30만원 그대로 깨지겠네 제발 내일 학교에서 나의찾기 신호 떠라
-
1. 아잉은 무조건 중급이나 고급으로 들어라. 초급반에 간다는 것은 고려대생으로써의...
-
그 때가 재밌었는데.. 오랜만에 우연히 차영진t 해설강의 듣는데 다시 공부하고...
-
보통 그냥 감이죠?
-
ㅅㅂ ..
-
아 슈발 에어팟 2
잃어버렸네 ㅈ같다 진짜
-
크크루삥뽕
-
시간 ㅈㄴ빠르네
-
다 끝냈는데 혹시 짧게 끝낼수 있는 언매 문제지 있으면 추천해주시겠어요??
엄청 신기해요
답글로 해당 게시글 링크 남겨드리려 했는데 벌써 확인해주셨네요!! 댓글로 설명하는 것보다 글 하나 남기는 것이 더 편할 것 같아 얼른 남겨봤습니다, 행복한 오후 보내세요~~
항상 도움되는 글 감사드려요 선생님
누구나 그럴테지만 수험생 분들께 무언가를 설명해드리거나 학습과 관련된 말을 건네드리고 도움이 되었다, 감사하다라는 말을 들을 때마다 참 행복하네요 ㅎㅎ 선생님께서도 꾸준히 수학에 관심 갖고 관련 글들 작성해주셔서 감사드립니다. 올해는 저도 기하를 열심히 공부해볼 계획이니 모르는 것 있으면 여쭤보겠습니다!
적분이 수렴하는지부터 따져야되지않나
안따져도됐었나 기억이안나네
엄밀히는 수렴 여부부터 확인하는 것이 맞긴 한데 가우스 적분의 경우 루트 pi로 수렴하는 것이 널리 알려져 있다 보니까 본문에서는 생략 했습니다, 형님 말씀대로입니다