복소수가 들어간 재밌는 평가원 기출 문제 + 풀이
게시글 주소: https://a.orbi.kr/00066905124
아까 올렸던 문제의 간단한 풀이를 정리해 보았습니다. 2020학년도 중등임용 수학 1차 전공 B 문제입니다.
먼저 리우빌의 정리(Liouville's theorem)를 이용합니다.
f(z)가 정함수라는 건 복소수 전체 집합에서 해석적이라는 의미이므로 f(z)+z^2도 정함수가 됩니다.
리우빌의 정리는 복소평면 위의 한 영역 내에서 유계인 정함수는 상수함수뿐이라는 정리입니다.
이를 적용하면 1/{f(z)+z^2}≤1/3이므로 f(z)+z^2이 상수라는 점을 알 수 있습니다. 이제 상수 k에 대해
라고 두면, f(2)=k-4, f(i)=k+1이 됩니다.
|k-4|=3이므로 k의 값을 복소평면 위에 그리면 4를 중심으로 하는 반지름이 sqrt(3)인 원 위의 점에 대응합니다.이때 |k+1|은 k가 위치한 점과 -1이 위치한 점 사이의 거리와 같으므로 k=2±sqrt(5)i일 때 |f(i)|의 최솟값 sqrt(14)가 나옵니다.
복소평면과 함께 고1 때 배웠던 원의 방정식을 여기서 활용할 수 있습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옛날엔 유튜브만 보고도 재밌게 있었는데 이제 뭔가 다 재미가 없음
-
재수,삼수때 미적 하고 28,29,30틀 거의 항상했었고, 확통은 현역때 하고...
-
희망과는 경영, 경제, 정치외교, 행정 정도입니다. 내신은 2점대 초반인데 교과우수도 될까요?
-
지구 1컷 0
42 아니었냐고 하.. 부산시교육청 믿습니다
-
탑의 랩 없으니 뭔가 허전 패배는 있으나마나 인 것 같고
-
빠빠뇨
-
다이어트가 아닌데 걍 돼지잖아 ㅅㅂ
-
중경외시 건동홍 국숭세단 << 여긴 빠삭함뇨 제작년에 국숭세단 공대 건동홍 교차...
-
수험번호도 만약에 똑같이 써 버리면 그냥 1차 합격자 그대로 다 뽑는 거 아님?...
-
이별이 두려워서 3
시작하지 않으면 진짜 좋아하는 게 아닌 건가요
-
독서 국어 강사 6
누가 가장 좋나요???? 언매 문학은 이번에 다맞고 독서는 30분정도 썼는데 많이틀려서요…
-
서성한 되는 과 있을까요? 내신 1점대면 고대 낮과 교과 상향 가능성 있을까요?
-
보통 1월 말까지는 계속 19만원인가요?? 작년엔 어땠어요?
-
님들이 공경돌렸는데 이스쿼드다 그럼 어떤생각드심?
-
나 문학 풀 때 0
처음 읽을 때는 거의 이해 못하고 문제 선지들 이런 거 보면서 작품 이해하고 푸는데 이게 맞나
-
흑흑
-
수정사항 FAKER - 29일 10PM -> 11PM - 30일 10PM -> X
-
그동안 국어 풀면 문학은 잘 나오고 독서에서 와장창 깨졌어서 독서 공부만 햇네요...
-
후한건가요 짠건가요
-
굶으면 ㅈ~~~ㄴ 잘빠짐
-
김승리or정석민 현우진 이영수 최적으로가려고합니다 환급받는다는마인드로가려하는데 어떤가요
-
제발
-
피곤하구나 16
그래도 다음 주 한정 목금 공강이 되어버렸어요
-
선착1 5천덕 3
내놔!
-
그건 바로 p파임뇨 푸하핫
-
광클 이벤트 당첨돼서 쿠폰함에 쿠폰 있다고 하는데 쿠폰함에 쿠폰이 없어서요
-
과탐 정상화시켜라
-
화1 만표가 64? 더프냐 ㅅㅂ?
-
원래 12시간하고도 부족하다고 생각했는데 요즘은 한 3판하면 질림….
-
1컷 50 화1은 7ㅐ추ㅋㅋㅋㅋㅋ 아 1컷이 51점이겠냐고 ㅋㅋㅋㅋㅋ
-
성적표 1
미적 73 물리 44 이거 3등급,2등급 변함 없겠죠 ?? 2합5 맞춰야 하는데 불안하네요 ㅠㅠ
-
외모객관화못하더라 자기의 외모가 상위권이라 생각함
-
이대 경희대 낮은 과 가능한가요ㅠㅠ
-
유빈이에 작년꺼 브릿지 25회분 있던데 ㄷㄷ 암튼 1년간 엄소연샘 정규반 다닐 거...
-
그니까 많이 참여 부탁
-
백분위입니다 국 88 수 89 영 2 탐1 98 탐2 94 문과입니다
-
예쁘네여 (사진 누르면 포만한 공식 게시글로 이동합니다)
-
물리 버리기 너무 싫어...ㅈ같은 사탐은 하기가 너무 싫다
-
지금까지 과탐에 투자한 시간이 몇 시간인데.. 사탐런 하면 처음부터 공부해야될...
-
공하싫 6
노라방갈까
-
전여친이 없으니깐뇨
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
헤헤 9
취르비 ㅎ
-
아이고 머리야
-
김승리 올오카 0
작년 버전 들엇엇는데 올해꺼 굳이 또 들어야할까용
-
다른 갤은 안해요
-
아무것도안하고뒤굴거리기만함뇨 아무것도하기가귀찮음뇨
-
뻥임뇨
리우빌은 공수2에서도 특이주제인데ㄷㄷ
복소함수론 책 대충 보다가 찾았어요
베이스 탄탄하게 쌓은 게 아니라서 그 정도 수준은 안 된다 보시는 게...
결국 저거만 알면 벡터적 해석이 맞네요 하 ㅋㅋ
잘생긴데 수학까지 잘하시면 반칙 아닌가요