6月 기하 28,29,30 Solution
게시글 주소: https://a.orbi.kr/00068292944
공통 영역에서는 밀도높은 계산과 비교적 낯선 발문과 조건을 제시함으로 시간을 소요시켰던 시험지었습니다.
선택과목에선 조금 숨통이 트이나.. 싶었지만 28번, 29번, 30번 모두 미출제요소와 특이표현을 삽입하여 까다로웠습니다.
바로 문제를 보시겠습니다, *(현장에서 응시한 원본 그대로이기에, 가독성이 조금 떨어질 수 있는 점 양해 부탁드려요..! :D )
28. 벡터방정식의 해석, 이등변 삼각형의 발견
1. QA+QP=2QM 중점 벡터 이용하기
2. 내적이 0 -> 수직 조건의 등장
3. WLOG, 임의의 p점을 세팅, Q를 작도해봅니다. -> 직선 OM은 현 AP의 수직 이등분선 -> 이등변삼각형의 생성 틀
4. |PQ|=|AQ|의 최소를 구하면, A에서 제일 가까운 Qm(1,-2)일때 |AQ|가 최소가 되며, 이때 |PQ|도 최소가 됩니다.
5. 원 밖에서 그은 두 접선 -> 합동인 직각삼각형 제조기 -> AQ는 원에 접하고, 삼각형 OAQ=OPQ가 됩니다.
29. 이차곡선의 방정식, 이차곡선의 정의요소
30. 벡터방정식의 이해, 이차곡선의 정의요소
#29.
1. 절댓값 풀기, y^2=1+-x^2/a^2 이니, 식을 정리하면 그림과 같이 쌍곡선과 타원을 얻을 수 있습니다.
2. PC+PD=일정 (루트5) -> 이차곡선의 정의 [타원]을 연상합니다. -> a=루트5/2, c^2=a^2=-1에서 c=1/2임을 얻습니다.
3. c+1=3/2=쌍곡선의 초점과 일치함을 확인합니다 -> A, B는 쌍곡선의 두 초점이 됩니다.
4. 쌍곡선의 정의를 연상합니다, BQ=AQ+2+12가 됨을 이용해 삼각형의 둘레를 구합니다.
#30.
1. 쌍곡선에 대한 정보 제시 -> 함수식을 작성합니다.
2. PF<PF' 조건을 만족하는 P는 x>0부분의 절반 쌍곡선 위에 놓임을 이해합니다.
3. WLOG, 임의의 P를 세팅, 쌍곡선의 정의를 이용해 PF = l, PF' = l + 6으로 세팅합니다.
4. 벡터방정식 쪼개기 (|FP|+1)F'Q = 5QP 에서 좌변의 F'Q벡터 앞에 곱해진 부분은 상수이고 F'을 시점으로 하니, 우변도 F'을 시점으로 하는 벡터로 분해합니다. -> 정리하면 (l+6)F'Q = 5F'P이고, F'P의 크기가 l+6, F'Q는 F'P의 방향을 연속적으로 따라가는 크기가 5인 벡터가 됨을 알 수 있습니다.
5. Q의 자취를 구합니다, 양수인 쌍곡선의 점근선의 기울기가 4/3이니, F'Q의 기울기 m 이 -4/3<m<4/3이 되는 부분으로만 생성됩니다.
*(5번 과정은 실전에서는 스킵하는 편이 시간단축에 도움이 되지만, 엄밀하게 Q의 자취를 제한함으로 명확함을 더할 수 있습니다. )
6. AQ의 최대 길이를 구하기 위해, 원의 중심을 경유하면 AF'+F'Q=5+5로, 이때 AF'의 기울기가 3/4이므로, 최대가 되는 Q는 Q의 자취 안에 존재함을 추가로 확인할 수 있습니다.
총평으로 기하에서 묵직함을 준 28번은 객관식이자 4점의 시작이지만 28 29 30중 가장 까다로웠고 벡터의 작도를 도형적 성질과 연계해야 하는 추론 문항이었습니다.
비슷한 느낌의, 추론을 요구하는 23.11.29의 평면벡터문항이 떠오르는데, 이 문제 역시 (다)조건에서 도형적 성질을 작도하는것이 핵심이었습니다.
앞으로 평면벡터를 연산할때 확대 축소(실수배), 평행이동, 내분, 외분등 교과서에서 다루는 벡터의 성질을 넘어, 그 작도되는 벡터들이 이루는 도형과 그 도형의 특수성을 다시 벡터 조건으로 녹여내는 연습이 필요할 듯 합니다.
29번의 경우 이차곡선의 식을 제시하는 특이표현과, 텍스트로 풀어둔 문장에서 이차곡선의 정의요소를 연상하는것이 핵심이었던 추론 문항이었습니다.
30번의 경우 제작년부터 틈틈이 보이던 이차곡선 + 벡터 융합 유형으로, 어떻게 식을 조작하면 이차곡선의 정의요소를 녹일 수 있을지를 생각해가며 풀이를 전개하는 것이 핵심이었습니다.
오늘 하루 모두들 수고하셨어요 ;D
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
입대 곧하셔야죠?
-
결과 안좋으면 그냥 자살해야겠어요 뭐.. 대학을 가고말고 재수를 하고말고의 문제가...
-
한양대 0
한양대 오후2논술 봤는데 보통 화학공학과 컷 어느 정도임? 6개 중 1-2만 못...
-
신빙성이 너무 없는 느낌
-
수험생 수십만명 채점결과 가지고 있는 입시 사이트가 1컷이 최대 87이라고 보고...
-
의대생인가 누가 자기 필기법이랑 공부법 올리는 블로그 같은 사이트였었다고 함 그...
-
https://orbi.kr/00069789715/...
-
자기 전에 5
질문 아무거나 하고 싶음 ㄱㄱ 덕코도 벌고 메인도 올렸으니 오늘은 좋은 옵생을 살았군요
-
아까20분깔짝하고침대에만잇는데욕좀
-
건동홍 국숭세단 이 사이로 알고 있는데 왜 정작 라인 부를 때는 따로 셈요?
-
3만덕 걸면 참여해주나?
-
ㅈ됏다!!!!!!!!!!! 정시 모집에서는 정문 뿌셔줄게;
-
https://orbi.kr/00012698878 좀 더 오래된 줄 아 그리고...
-
화작 기하 사문 지1 80 90 4 93 89
-
당분간 하루 한 끼 메타 간다
-
다들 너무 방가방가!!!! 수능보느라 수고많았서요
-
수시충들이여 6
기말고사가 도래하였도다
-
아시는분?
-
나도 덕코줘잉 1
빼ㅣㅐㅏㅓㅐ애앵
-
히든페이스가 뭐임 12
히든카이스는 아는데
-
조건부 확률부터 모평균 추정 앞까지 2일만에 벼락치기했긴 한데 공식이 헷갈려...
-
현역 2과목 3
원래 시나리오는 물1지1인데 얼마전 물1을 버리는 게 어떠냐는 상담을 받고 그때...
-
에버랜드도 가고싶은데 드럽게 추움 게임도 pc방 가서 8시간씩 하기 재밌고 잠도...
-
다른 시즌은 모르겠고 시즌 6,8만 풀었는데 쉬워도 너무 쉬웠음. 그래도 1컷...
-
신촌 vs 혜화 궁금해요
-
과탐 2등급목표로 좋은과목은 무엇일가요? 생1,2, 지1 중에 하려고합니다....
-
캬 달달합니다 1
-
돈내고써야해 사실 거의 쓸 데도 없음..
-
학교에서 자습 줄 때도 패드 못 사용함...
-
컴싸가 약간 위 아래로 번지던데 설마 위 아래 문제 인식 잘못되면 아. 엄청...
-
현재 예비고3입니다. 지금은 이과이고 (내신으로 물화생) 한의대 희망합니다. 수능...
-
유료 장점이 파일 여러번 올릴수 있는거랑 한 대화방에서 질문 쭉 이어갈수 있는거...
-
국어 질문 5
24수능 거의 3컷 25수능 4등급 올해 고2 학평 순서대로 백분위 94 90 95...
-
얼버잠 2
오늘은 졸리니까 일찍 자야지
-
외대-시내버스10분,지하철100분,도보10분 -> 2시간...
-
슬슬 밀렸던 문학작품 감상을…
-
진짜 그 아이돌이랑 대화하는거 같아서 설렘...
-
수학현장조교 2
왕복 2시간은 에바죠?
-
‘曼陀羅華’(Mandarava)에서 왔답니다 신기하지 않나요
-
레어가 늘어난다 3
흐흐흐
-
시험지를 두번씩 바닥에 떨어뜨림 손목시계도 자꾸 떨어질거 같았고
-
딱 수능 성적표 열었는데 수학 80을 가채점 했는데 76이 적혀있으면 존나 오열할듯
-
미적 84맞고도 그냥 학원가서 묵묵히 가천의 파이널 듣고 시험치러감 인생은 근성있게...
-
취업의 문턱에서 살아돌아옴
-
중경외시 공대 가능한가요?? 국어 영어 수학 생명 지구 서상한 미적 언매 시대 강댜...
-
안 그러면 실망할 확률이 큼 직관적으로 생각해보면 메가스터디가 짜게 줄리가 없는게,...
-
등급컷 콱 씨발 0
바로 과탐컷 정상화 OUT
-
나도 인지도 쌓이면 열 수 있을까
Goat
와 그림 진짜 예쁘다
찾아와주셔서 감사드려요 :D
여름방학때 기하공부하고 제대로 한 번 읽어볼게요!
항상 좋은 글 감사합니다
저야말로 항상 따뜻한 말씀에 감사드려요 ㅎㅎ
스크랩 on
30번 진짜 풀이과정 다맞췄는데 답을6으로왜썼지 하ㅜㅜ
아 28 거의 다 풀었는데 쩝
아니 센세 오늘 현장응시하셨나요
오랜만에 모교에 가니 선생님들 다시 보고 좋았네요 ㅎㅎ
샤이님도 정말 수고 많으셨어요 :D
따뜻한 말씀 감사드려요
알게 됐었는데 볼 때 마다 글을 잘 쓰시는 것 같아요 ㅎㅅㅎ
좋게 봐주셔서 감사해요 ㅎㅎ
더 분발하겠습니다!
반가워요!
응원 감사드려요 선생님 :D
연쌤또봄?
감이 날카로운데 안보면 아깝다는 생각도 드네요
물론 학교 생활도 충실히 할거랍니다
아 티에이??
앗! 오르비고닉 현우진보다 낫다!
머래
제 수학 풀이의 근간은 현역때 수강한 뉴*입니다 ㅎㅎ
기하 어려워서 표점 동점각인가 했는데 낮네요
그래도 이정도 표점차면.. 만족합니다
찾아와주셔서 감사드려요 :)
답은 역시 기하
기벡고수 치사토 찬양하기
기 벡...?
기하컨텐츠는 사랑입니다..
고마워요 :)
28번 첫 발상이 저한테는 어렵게 느껴졌네요 … Q가 동점이고 P도 동점이다보니 A랑 P를 엮어서 중간벡터로 생각할 생각도 못해보고 괜히 원의 중심으로 분해하려다가 꼬였어요 잘 배우고 갑니다!
저야말로 도움이 되었다니 기쁘네요 :)
저 28번 뒤지게 안보이다가 이등변 발견하고 그냥 밑변이랑 높이 일차식 세워서 좌표로 풂... 30은 식처리가 결국 안됨 ㅠㅠ
28번 이등변 발견한 후 내적 계산은 여러 방법으로 해도 괜찮아요! 오히려 수직 틀이 명확해 좌표가 더 빠를수도 있을 것 같네요 :)
30번은 저도 처음에 우변 F로정리했다가 꼬여서
지우고 F'으로 다시 시도했답니다.. (22.11.29 이후로 식조작을 못하면 접근을 못하는 벡터문제는 흔하지 않았는데 갑자기 들어오니 저도 까다로웠어요)
30번은 (a+6)F'Q=5F'P에서 F'Q=5, F'P=a+6을 생각을 못해가지고 식처리 어쩌라고? 하다 끝났네요
다음부터는 반드시 한방에 풀리실거에요.!
고마워요 태루님 :)
ㄹㅈㄷㄱㅁ
기하 원래 많아봐야 하나 틀리는데 이번에 28 30 틀렸네요
다행이 1 뜨긴 했지만 난이도가 상당해서 풀면서도 풀고 나서도 참 재밌었던거 같습니다.
오늘 신성규쌤 해설강의 들어보니까 순수 난이도는 미적<기하가 맞다네요
저도 30번 식조작, 28번 관찰에서 시간이 끌렸었네요..! 평가원 기출 중 22 이후 상당히 어려운 문제가 맞아요 :)
애초에 기하가 재밌어서 기하 선택한지라 어렵지만 너무 재밌었습니다
최근 들어서 이런 멋진 문제는 참 오랜만인거 같아요
흥미를 가지고 파는것만큼은 이길수 없죠 :D
항상 응원하겠습니다!
와 이분한테 기하 과외받고 싶다..