미분가능과 도함수연속성
게시글 주소: https://a.orbi.kr/00068839810
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
언매 91 백분위 92 미적 92 백분위 96 한지 48 백분위 96 사문 47...
-
국어 김승리 수학 현우진 김범준 영어 이명학 사문 임정환 정법 최적
-
등장 0
ㅎㅇ
-
국어 화작 81 0
국어화작 공통만 틀린 81점인데 3등급 될까.?0
-
진학사 미적 1컷 86으로 잡혀있는데 88은 모두 다 1등급으로 찍히나요? 지금은..
-
일반고 계적 0
고대 자연 계적에서 일반고 합격이 13퍼던디 얘넨다 갓반고임? 서울대 10명씩 가는 학교는 되나?
-
26년도 수능을 준비하는 입장인데 의대 이슈때문에 너무 쫄리네요 0
26년도 의대 안뽑거나 확 줄여버리는거 아닌지 ㅠㅠ 흑흑 ㅠㅠㅠ
-
설대 어디까지 ㄱㄴ할까요? (설대식 416.10) +) 올해 같이 본 놈은 설대식...
-
ㅈㄱㄴ
-
상상할수 있는 최악의 백분위인데 자연대로 연고대 가능한가요?! 화미영생지 순입니다
-
코 풀고 엄청 큰 누런 콧물 나오니까 쾌감 미침;;
-
비닐도 안 뜯은 프로모터 택포 1.5에 팔아요! 원가 28,000 10분 내에 쪽지...
-
이해 안 감뇨
-
1년 다니고 군대 갔다가 오면 다들 취업/전문직 진입 고민/전공 공부 고민하고 있고...
-
ㄹㅇ..
-
모고 풀 때 수학 4점 문제에 벽을 느끼고 있습니다… 수학 4점 문제 잘 푸는...
-
어미 '-지'가 붙으면 반의어가 되는 것 같아요
-
최악을 가정해봤는데 상향일려나용
-
짧공 완료 0
결과나오기전까진 워밍업쿠
-
언제자지 10
잠들기조차 귀찮군.
-
술술술술술 수리수리 마수리
-
물2생2 드가자 0
어 형은 설치를 갈거야
-
Team 06 26 수능 Last Dance 준비완료 4
07들을 밟고 대학으로.
-
둘 다 나군에 겹쳐버려서 고민이 많이 되네요.. 둘 다 중간~낮공 정도면 어디 쓰는게 맞을까요?
-
와 시발.. 나 다 시 돌 아 갈 래 ~~~~~~~!!!
-
논술 가이드북에 컴싸 마킹에 관한 얘기가 없는것 같은데 수험번호 마킹을...
-
학부대학 때려죽어도 안되겠죠 자유전공이랑 같이 유이하게 제2외 안봐도 되던데
-
피드보다가 까먹음 분명또찡찡대는거였겠지
-
밥이나 잘드시라고요
-
귀리의 리도 사실은 보리입니다 귀보리>*귀ᄫᅩ리>귀오리>귀리 의 변화를 겪었답니다~...
-
지인도 없는데
-
명지대 인문 계열 ㄱㄴ? 더 낮게 잡아야 하나... 상향 쓸 거면 어디 쓰는 게 나음
-
사실 별거 없는거같긴함 국어 재능충이고(2024년 국어순공 30시간 미만 독서 기출...
-
게임 접속을 못하겠어 요즘... 다인모드를 해봐야하나
-
ㅈㄱㄴ
-
03 5수(군수)생들아 우리같은 미친 개새끼들이 왜 무서운지 알아? 물리면은...
-
사탐런 할려는데 강사 누구들을지 모르겠음 ㅠㅠ 생윤은 임정환 들을거같은데...
-
둘다 대머리
-
공부가 재밌음. 수능 공부든 대학 공부든, 각각 다른 재미가 있음. 수능 공부는...
-
예비고1인데 작수 2뜸 국어에 시간 쓸 바엔 수학에 투자하는게 맞는 것 같은데...
-
물빨하지 말자 씨발년놈들아
-
아빠가 마트에서 세계 맥주 랭킹 순으로 사와서 마심 다 마신 건 아니고 몇 모금씩...
-
화생으로 수능으로 봐도 됨? 유전이랑 중화반응에서 먹음
-
이감 파이널 모의고사 10회분 5만원에 팔아요 시즌5 4회차,시즌6 6회차입니다...
-
다메다메 다메요 3
이거 벌써 4년 됨 ㅋㅋㅋㅋ
-
다메다메
-
없어서 강기본 듣고나서 김승리 풀커리 탈려고 하는데요....ㅜㅜ
-
올해도 민지와 랄선생님과 함께 크리스마스를 보낼 테니 솔크는 아니겠지요
-
여기 2명 뽑는데 막판에 18명 더 들어옴 ㅅㅂ ㅋㅋㅋㅋㅋ
-
ㅈㅂ
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=