미분가능과 도함수연속성
게시글 주소: https://a.orbi.kr/00068839810
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
중대 논술 6
개좆망~ㅜㅜ
-
망각률이 엄청 많이 차이남 ㄷㄷ 이런 이유는 각성(깨어있음) 동안에 여러 자극들이...
-
문제도 못풀고 최저도 안될 확률 높은데 집에서 쉬어야지..
-
설약 입결 0
표점 얼마여야 하는지 구체적으로 알고 싶습니다 그리고 작년 시대 입결표 보니까...
-
2학년 내신으로 정법을 하긴 했는데 3학년 선택이 세지사문이라 수능까지 같이 하는게 나을까요?
-
의문이었는데 생각해보니까 나같아도 국영수 5등급한테 내 몸 수술 안맡기고 싶을듯
-
1컷 41이면 최저맞추는데 면접준비 할까요? 아님 걍 하지말까요...솔직히 가능성없어보이는데
-
수학 29번 실수만 안했어도.....
-
흠
-
2컷 39점
-
너 짱 0
너짱
-
하 (논술로) 전과 하고싶은데 ㅠㅠ
-
디시보고 느낀점 2
이런 사람들이 의사가 된다라..
-
지금 진학사변표 0
지금 통합변표인지 분리변표인지 아직 발표안한 대학들은 진학사에서 그냥 자체적용한건가요??
-
옥린 옥루 유씨 오렌지 (이새기가 제일 악질) 이런거 예상하다가 나온거: 똥을 싸질렀다 킥킥
-
메이플 탄지로 3
스우까지 컷 캬캬
-
똑똑한애들이 설공가야됨 36
원래 둔재들이 메디컬가고 진짜 똑똑한 애들이 설공가야된다고 봄 난 범부라 서울대가면...
-
몇개 맞추셨나용….. 인칼분들만 해주세요‘ㅜㅜㅜㅜㅜ 냥논 냥대
-
님들이면 어디감? 참고로 삼수생임
-
국어 선택 0
국어 강사 누구 들을지 고민중인데 주간지랑 이것저것 빵빵해서 김승리 들을까요?...
-
윤도영쌤이 2026년도 탐구선택가이드 올릴때까지 선택미룰것같은데 그동안 국영수만 할까
-
미적 2컷 2
미적 1틀 76점인데 2등급 ㄱㄴ? 표점때문에 가능한가
-
나 답은 맞은거같은데 필력이 개판이라 기대가 안되네
-
고대 사과탐 통합변표 기원 1일차
-
근데 25는 뭔 복을 타고났길래 6,9,수능에 다나오냐 9
그것도 29,30 같은 주요 문항에만
-
일단 3합3 맞췄을 사람들이 많지 않을거고… 수학은 거의 항상 백분위...
-
이거 매년 개정되는 강좌인가요?
-
난 메쟈의 아니면 안가
-
3.8X/4.3 이론물리학 연구실 진학예정 심심합니다. 학업적인 것, 대학생활...
-
질산칼륨
-
고대 세종 약학 11
난이도: 중하 타임어택: 최상 (소문항 10문제를 90분 안에...)
-
3모 88 5모 85 6모 92 7모 92 9모 92 10모 86 수능 100 더프...
-
근데 기하 쉽다는 분들 18
확통이랑 비교하면 또 기하가 확실히 어렵다 생각하시나요?
-
중대 오후 1번 1
4/27나오던데 맞나요?? 뭔가 틀릴거같은데….
-
연인 나이차 12
위아래 몇살이었으면 좋겠음?? 나는 위로 6살이상
-
부엉이가 물에 빠지면? 13
첨부엉 첨부엉 ㅋㅋ
-
허우적허우적 ㅋㅋ
-
미적확통 1
아무리 확통머리가없고 미적공부하면 자연스레 수1수2심화공부된다해도 문과면 닥확통하는게 맞겠죠?
-
흠냐 6
잘 잤나? 다시 잘까 으헤
-
포켓몬 몸부림 6
그 기술 다 쓰면 몸부림 쓰는데 예전에 난천 깰 때 초염몽 몸부림으로 개지랄해서 깨던 기억이 나네
-
문학 공부범 7
이처럼 훌륭한 비석을 남겼다 이부분이 반어법이라는데 그런건 어디서 근거를...
-
241122: 69×7=683 251130: 18^2=364
-
작년에 고대 5점차이는 ㄹㅇ 진짜 너무하긴하네 올해는 통합변표로 가자! 출처: 물리학 1 갤러리
-
한국사의 중요성 5
저 한국사 2라 한국사 1로 바꾸면 제가 이김
-
사탐런 메디컬 2
미적에 사탐끼는거 어떤가요 07이고 미적 안정적으로 1떠요(백분위98이상) 국영은...
-
켄텍 진짜 좋은학교인데
-
'성균관대 예비 25학번 지원자방'으로 옾챗에 검색하시면 뜹니다 링크는 금지어가...
-
신분증 분실 상태로 논술을 쳤는데 학교에 다음주 화요일까지 실물신분증 들고 오래요...
-
논술 감독관 선생님들은 다 그 학과 교수님들인가요? 0
ㅈㄱㄴㅈㄱㄴ
-
이왜진 9
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=