와진짜이풀이가맞나
게시글 주소: https://a.orbi.kr/00069001339
몇십분동안 고민해서 겨우겨우 낸 답은 맞았지만
풀이가 다르다
내 풀이에 오류가 있는 것 같다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
세종 숭실 인하 아주 이 라인으로 논술 지원했는데 대치나 강남에서 다닐만한 파이널...
-
수특 수완 평가원 기출 문제집 풀고 교육청 기출도 뽑아서 풀었어요 모의고사 풀면...
-
히카 시즌 7 3회차입니다 ㅜn-1~n까지 모든 자연수에 대해 fx에 대한 식이...
-
나머지를 얼마정도? 4등급아면 확률 많이 올라감?
-
잘 풀려서 그런가 ㅋㅋ 너무 좋은, 여러가지 요소를 다 담으면서 과하지도 않은,...
-
1일 수학3실모 0
하니깐 개 힘들다.... 일단 뇌보다 척추가 더 아픈 느낌...
-
찍기특강 저격 0
작년에 영어 홀수형이 찍기특강을 저격해서 냈다고 하던데 그러면 올해부터 거의...
-
왜 봇치 빙의하는 사람 많은지 모르겠음 인스타 하다보면 끼워팔기로...
-
24수능 본게 엊그제 같은데 벌써 25수능이 16일 남았다고?
-
수능 등급컷 특 2
바라고 기원하는 등급컷 +3이상임
-
수능 신분증 1
민증 잃어버려서 여권 갖고가려고 하는데 신분증 바닥에 던져두고 시험봐도 되너요??...
-
돌아갈 곳이 없다 수능대박만이 살길이다
-
사고다사고
-
나하고 사귈땐 교회 싫어한다고 말하던데 뭐징... 심지어 나 기독교인인데도 앞에서...
-
작년에 충분히 수학 잘했는데도 샤인미n제 하이엔드에서는 무참히 썰렸던 기억이 있는데...
-
수능도 안보는데 39000원 내기가 싫어서 중고로 구해서 봐야지,,,
-
올해 읽은 글: 6평+사피엔스 2/3 분량 ㅋㅋㅋ
-
파이널 김종익 모의고사 6회 15번 해설에는 싱어는 세계의 모든 가난한 사람을...
-
어떻게 무정에서 영채하고 선형을 동시에 홀리겠냐
-
지금 이 시점에 가장 효율적인 독서 연계 공부는 뭘까요 1
Ebs 수특만 1/3정도 풀긴했는데 한달전이라 잘 기억안남 어케해야됨요
-
항상먹고나서후회하는것 맨날 똑같어
-
전형태 언매 파이널 2,3회 2506 비문학 두 지문 진득하게 분석 문학은 이틀동안...
-
이게 올해 연계라서 지금 체감이 잘 안되나. 나는 둘다 비연계로 본 입장이라
-
자취생 집밥 12
구운 참치 주먹밥..맛있음표고버섯 볶음밥…고기파인데 고기가없어도 마싯음대충...
-
현역이고 9모92,10모80입미다
-
고비다고비야 8
등이 두드러기에 잠식당하는중 이거 설마 위험한건가
-
안햇는데…지금이라도 해야할까용 대충 수특 레벨3랑 수완 실모만 풀면 되려나
-
빤히 쳐다본다는거 ㄹㅇ임?
-
꽤나 공들여서 만들었음 오르비언 전원 입주 가능할 듯
-
잠이 안온당 3
질받을 해볼까 할사람이 있을까
-
갑자기 든 생각인데 연애라는게 너무 시간이 아까운 것 같음 13
나는 감정소모도 많이 하고 연애하면 돈도 많이 쓰고.. 연애를 한다면 주에...
-
선 연락 절대 안하고 먼저 놀자고는 커녕 밥먹자고도 절대 먼저 말 못하고 놀자고...
-
12시 반에 시작해서 1회독 마쳤는데 웬만한 건 다 알겠음 전공이랑 갭이 너무너무 큰 것 같아..
-
제발요 ㅠ 참고로 허수라서 난이도 적당한걸로....(브레턴우즈나 헤겔같은거 제외...)
-
진짜 잘래 12
내일은 진챠 5시에 인난다
-
맞짱깔새끼구함 9
나오셈
-
하루에 day 2개씩 해야도ㅔ네
-
얼마전에 편입학원가서 상담받고 11,12월 단과로 73만원 결제했었는데…그때는 무슨...
-
흠.... 작수보단 열심히하긴했는데 좀 불안하다 ㅋㅋㅌ 작수도 삼이긴했는데 올해는...
-
중고딩때 가장 중요한 과목은 국어도 영어도 수학도 아닌 듯 25
'진로' <- 이 시간에 진지하게 고민 안하고 놀기만 했으면 안됐음;;
-
예체능좃같음 4
1/15에끝남
-
16일의 전사 1
지구 현재 사설 40초. 16일의 전사모드로 돌입해서 수능 1ㄱㄴ?
-
수능 끝나면 할거 13
음악 작업 해볼거임 흐흐
-
김승모 좋음? 7
강평이고 이감만 풀어서 딴 실모 사고 싶은데 상상 패키지는 다 못풀거 같아서...
-
존나 잘생기고 몸좋고 능력있고 싶다 씨바아 ㄹㄹㄹ
-
어떻게 풀더라 <<< 이거 한번 해주고 아 이거네 (아님) 아 이거네 (아님) 아...
-
[수학] 2~4등급 가장 효율적인 수능 마무리 공부법 80
안녕하세요! 정말 오랜만에 오르비에서 글을 쓰네요 제 소개를 간단히 하면 현역 수능...
몬데
억지로 푼 것 같아서 불안하네요
잠깡만여 글씨가작아서 보는데좀 걸림
사실 2번 케이스에서 (1,4+a)가 존재하지 않을 “수도” 이부분은 사실 문제가 있긴 해요.
Q. 그럼 문제를 처음 풀 때 어떤 생각을 했어야 하나요?
g(x)의 연속 조건에 주목했어야 해요. g(x)가 f(x)!=0 일 때 분수꼴 함수로 나타나죠. 그러면 분수꼴 함수에서 분자, 분모는 각각 연속함수이기 때문에 불연속이 될 수 있는 의심 지점은 분모=0일 때에요
그러면 g:연속이라는 조건에서 f(x)에 관한 조건을 어떻게 뽑아내야 할까요
일단 f(0)=0인 거는 잘 찾으셨고 0은 중근이 아니라는 것도 아실 수 있었겠죠 근데 여기서 하나를 더 찾아갔어야 했어요
삼차함수의 실근 하나가 밝혀졌기 때문에 0을 제외한 실근이 최대 2개 존재할 수 있어요 f(x)=xp(x)정도로 둬봅시다 (p(x)는 최고차항계수가 1인 이차함수)
1) p(x)의 서로 다른 실근이 2개인 경우
p(x)의 인수 중 하나가 (x+3)이더라도 무조건 분모=0이 되는 x가 존재하므로 모순.
2) p(x)가 중근을 가질 경우
최대한 분모가 0인 지점이 없도록 맞춰준다고 해도 p(x)=(x+3)^2 이고 x=-3일 때 발산, g(x)는 불연속이 됩니다
따라서 p(x)는 실근을 갖지 않아요
상수항은 질문자님도 이미 찾으셨으니 판별식 이용해서 p(x)의 일차항 계수의 범위를 구해주시면 되겠어요
저는 아마 보자마자 p(x)는 실근을 갖지 않는다고 생각했을 거에요
경험 더 쌓으시다 보면 바로바로 보일 거에요
참고로 답이 되는 삼차함수가 2번 케이스처럼 생겼는데 실근이 1개만 생길 수도 있어요
저렇게 판단하는 건 틀렸다고 봐야겠어요
얘는 해설입니다