누가누가 잘찍나(30000덕)
게시글 주소: https://a.orbi.kr/00069220146
당신이 원 모양의 숲 속에서 길을 잃었다고 하자. 숲이 정확히 반지름 1km의 원이라는 것은 알지만, 현재 숲의 어느 위치에 있는지, 어느 방향을 향하고 있는지는 알지 못한다. 이때 어떻게 할 지를 묻는다면, 직관적인 답은 ‘숲을 벗어날 때까지 직선으로 걷는다’일 것이다. 실제로 최악의 경우에 숲을 벗어날 때까지 이동한 거리를 판단 기준으로 삼는다면, 일직선으로 걷는 것이 최고의 선택임을 증명할 수 있다.
그러나 모든 숲에 대해 이 전략이 최고는 아니다. 예를 들어, 가로 길이가 1km이고 세로 길이가 무한한 직사각형 모양의 숲이라면, 직선으로 걸을 경우 최악의 경우, 즉 숲과 평행한 각도로 걷기 시작했을 경우 절대로 숲을 벗어나지 못할 것이다. 한편 직선으로 앞으로 루트(2)km만큼 걸은 뒤 90도 돌아 다시 루트(2)km만큼 걷는다면, 시작 지점과 각도와 상관없이 숲에서 빠져나올 수 있다.
다음 중, 최고의 전략이 직선으로 걷는 것이 아닌 숲의 형태를 모두 고르면?
(모든 ‘숲‘은 2차원 평면의 닫힌 부분집합으로 간주하며, 숲에서 ‘벗어나는‘ 것은 숲의 내부를 벗어난 것으로 정의한다. ‘최고의 전략‘은 어떤 경우에도 숲에서 벗어날 수 있는 경로, 즉 모든 초기 위치와 각도에서 숲에서 벗어날 수 있는 경로의 모든 길이의 최대하계와 그 길이가 같은 경로를 의미한다.)
댓글로 답을 처음 맞추시는 분에게 30000덕을 드립니다.
아주 어려운 문제지만, 이해는 쉬우니까 찍기는 할만할지도?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3025명이 치대+한의대보다 많으니까 약치한 터지는 건가요..?
-
(대충 그 불꽃가능 짤)
-
이거 어디 글에 있나여 궁금
-
있어야 1 되는데 아 ㅋㅋ
-
“사문이틀만에만점호소인”부터 시작해서..
-
Sibal
-
물1러 2
물1러분들 수능 전날까지 계획이 어떻게 되시나요? 전 실모 계속 풀면서 작년이랑...
-
어때용 현실기준으로(공대)
-
. 7
-
1/5일부터 죽을만큼이라고는 안할게요 저보다 열심히 하신분도 많겠지만…. 1등급도...
-
공통 어려움 선택 쉬움 vs 공통 쉬움 선택 어려움
-
사문 0
도와주세요 아직 개념2회독 못했는데 어떻게 해야하나요 뒷부분도 까먹었는데 앞부분도...
-
저게 왜 논란인지 모르겠음 분명 처음에 배울땐 이해했엇는데 아니 애초에 부사절은...
-
그거 아시나요 6
현재 시각 11월 10일 오전 1시 49분... 수능 디데이 D-4 수능까지 94시간 남음...
-
개념양은 당연히 미적이 많긴 한데 체감상 난이도만 따지면 이렇지 않나
-
화이팅
-
적중예감 10~13 회차랑 사만다 파이널 수능 직전에 풀려고 아껴놨는데 공부...
-
진짜 미친시도 많이했다 국어 풀이 내좆대로 개조하기(문독문독문독언) 수학 4점...
-
늅늅 ㅎㅇ 2
이번에는 컨셉 못잡을거같습니다. .. .
-
추천좀요
-
덕코 편의점… 3
눈팅만 했을때 진짠줄 알았음 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ개웃김
-
호날두, 메시, 즐라탄, 토레스, 아자르, 노이어, 로이스, 크로스,...
-
이거....왠지 예전에 n주기라 나올법하다 하고 안나왔었는데 혹시? 주제도 그렇고...
-
왠지 '기세' 두글자는 쓰면 안될것 같은 느낌이;;
-
국어 순서 어떻게됨? 15
난 문독언
-
에서 나온거 중에 수능에 나온거 뭐있음?
-
요즘도 예언 자주 하시나??
-
허수특 2
이해원n제 풀면서 이렇겐 수능에 안 나올 듯 ㅇㅈㄹ하면서 문제 오답 제대로 안하고...
-
근데 20번 뭔가 해설하고 다르게 풀었는데 제가 생각한게 맞는지 확인 가능하실분 계실까요
-
6모 1 9모 2 10모 2 현돌 파이널 44 47 50 걍재미로 ㅇㅇㅇ ㅎㅎ
-
근데 쉽게내려고 계속 깎다보니 이래 됐다고 들음 친구 학교 쌤이 그럼 평가원 자주 가신다던데
-
생체 리듬 돌려놓기 프로젝트 1일차
-
안떴다. 해모 시즌 1~4 중에 하나만 추천좀 그냥 멘탈 힐링용으로 파이널은 풂...
-
쌍사특 0
세계사 : 이게 1컷 50이라고? 동아시아사 : 이게 1컷 50이 아니라고?...
-
사문 강k 15 0
사문 강k 15번 어떤방법으로 푸는건가요 풀려고해도 안풀려서요
-
아예 과거버전도 못보게 막아놨네 어휴
-
레어 사고 싶다 8
현재로서 구매가능한 레어는 괴산군 레어뿐.. 괴산군 잘 몰라요.. 안 땡겨요 ㅠ
-
엄청 나중에 돌아와서 몇명만 딱 팔해놔도 누군지 알고 평소엔 커뮤 잘 안하는데 딱...
-
올해 계속 수학 쉽게 내라고 명령 여러번 떨어졌다고... 9평도 그 일환이고
-
1. 관대한 pdf 예전엔 누가 피뎊 쓰다 걸리면 메인글이 그사람 욕으로 도배되고...
-
미헌법중,1조는 정부의 입법부 즉 미국 의회를 정의하고 있다. 여기에는 하원과...
-
내일은 비역학 개념책 조진다
-
카톡으로 용돈 보내주셨는데 수능 끝나고 받는게 맞겠죠? 감사인사는 드렸는데
-
(✷‿✷)
-
수능은 자신감이 7
ㅣ진짜 중요한가보네요… 윤도영쌤도 그렇게 말씀하시고 저희 학원쌤도 똑같이 말씀하시던데
-
이제 미적 전범위 개념학습(미친개념 찍먹하고 예제+연습문제 공책에다 풂) 끝나서...
-
풀수있는문제가 꽤 많았네
-
내년 고3이라 가을때부터 천천히 심맨님 커리 따라갓엇는데 이제 곧 끝나서 커리중에...
-
https://orbi.kr/0009658324/ 전 이거
7
6
혹시 반수 하시나요 ㅋㅋ 요즘 뭐하고 지내시는지
반수는 안해요
걍 행복하게 사는중
‘모두 고르면‘ 입니다…
설마 답이 1개겠어요
개으렵다
사실 저 보기중에는 아예 현재 증명된 최적경로가 없는 것도 있어요
직선이 아닌 걸 알 뿐…
푸는거보다 논문 찾아보는게 빠를거같아요
최고의 전략‘은 어떤 경우에도 숲에서 벗어날 수 있는 경로, 즉 모든 초기 위치와 각도에서 숲에서 벗어날 수 있는 경로의 모든 길이의 최소하계와 그 길이가 같은 경로를 의미한다.)
하계가 막 실수집합의 크기와 자연수집합의 크기가 다르다 이런거 할때 쓰는 하계인가요...?
저건 사실 엄밀하게 쓴 거고, 그냥 숲에서 벗어날 수 있는 경로 중 길이가 최소인 걸로 생각하셔도 되요
그건 기수의 개념인 것 같아요
실수(또는 순서가 정의되는 집합)에서 어떤 집합 S의 하계는 S의 모든 원소보다 작은 원소이고, 이 하계들의 집합은 원래 집합이나 이 집합이 공집합이 아니라면 항상 최댓값을 가지는데 이를 최대하계라 해요
그와중에 최‘대‘하계인데 최소하계로 오타났네요…ㅋㅋㅋ 보통 greatest lower bound로 많이 써요
모든경우
문제 이해가 잘 안되는데
모든 지점과 각도에서 출발할때 직선으로 걷는다 치면 그때 이동거리의 최댓값보다
직선이 아닌 전략으로 위 행위를 반복할때 모든 경우 중 최댓값이 더 작을 수 있냐를 묻는 것이 맞나요?
정확해요
예를 들어 원의 경우 직선으로 가면 최대 거리는 2이고, 다른 길이가 2인 경로를 사용하면 항상 탈출하지 못하는 위치가 있음을 보일 수 있어요(경로의 중심을 원의 중심에 놓으면 됨)
엄
1, 6?
역시 구글링이 최고인듯
(https://en.wikipedia.org/wiki/Bellman%27s_lost_in_a_forest_problem)
사실 구글링 아니면 빡세서…
직관적으로 원에 가까울수록 직선일 가능성 높다로 풀 수 있긴 하죠
은근 기하학 쪽에도 소파 옮기기 문제, 정사각형 채우기 문제같이
문제 자체는 이해하기 쉬운데 난이도는 훨씬 높은 문제들이 많은 거 같네요 ㅋㅋ
https://www.researchgate.net/publication/228694327_Lost_in_a_Forest
논문 찾은거같은데 늦었다니 ㅠㅠㅠ
피머쌤이 안하니까 분점에서 누잘찍이...
벨만의 숲에서 길을 잃은 문제는 1955년 미국의 응용 수학자 리처드 E. 벨만에 의해 제기된 기하학의 미해결 최소화 문제입니다. 이 문제는 다음과 같이 진술됩니다: "하이커가 모양과 크기가 정확히 알려진 숲에서 길을 잃었다. 그가 숲에서 탈출하기 위해 따라야 할 최선의 경로는 무엇인가?" 일반적으로 하이커는 출발 지점이나 자신이 향하고 있는 방향을 모른다고 가정합니다. 최선의 경로는 숲의 가장자리에 도달하기 전에 이동해야 하는 최악의 거리를 최소화하는 경로로 정의됩니다. 이 문제의 다른 변형들도 연구되었습니다.
실제 세계에서의 응용은 명확하지 않지만, 이 문제는 실용적으로 중요한 탐색 전략을 포함하는 기하학적 최적화 문제의 한 종류에 속합니다. 연구에 대한 더 큰 동기는 모저의 벌레 문제와의 연관성입니다. 이 문제는 수학자 스콧 W. 윌리엄스가 "백만 달러 문제"라고 설명한 12개의 문제 목록에 포함되었는데, 그는 이 문제를 해결하는 데 필요한 기술이 수학에 최소한 백만 달러의 가치를 지닐 것이라고 믿었습니다.
접근 방식
증명된 해결책은 정다각형과 원과 같은 몇 가지 모양이나 모양의 클래스에 대해서만 알려져 있습니다. 특히, 60° 마름모를 둘러싸고 긴 대각선이 지름과 같은 모든 모양은 직선의 해결책을 가집니다. 정삼각형은 이러한 속성을 가지지 않는 유일한 정다각형이며, 세 개의 동일한 길이의 세그먼트로 구성된 지그재그 선을 해결책으로 가집니다. 다른 많은 모양에 대한 해결책은 여전히 알려져 있지 않습니다. 일반적인 해결책은 숲의 모양을 입력으로 받아 최적의 탈출 경로를 출력으로 반환하는 기하학적 알고리즘의 형태일 것입니다.
일단
삼각형 - 직선 아님
45각형 - 직선 맞음
마름모 - 직선맞음
나머진 모르겠다 살려줘요
영어가 이상해서 모루겟서요 번역해도 이상하네
전 156 하겠습니다.
이 이게무슨