구간 별 함수 영향력 죽이기
게시글 주소: https://a.orbi.kr/00070041033
주어진 함수 f(x)의 그래프가 다음과 같습니다.
단순하게 생각할 때 이 함수에 어떤 함수 g(x)를 곱하면
구간 [t-1, t+1]에선 g(x)의 함숫값이 0에 더 가까워지고
구간 (-\infty, t-1)과 구간 (t+1, \infty)에선 g(x)의 함숫값이
힘을 잃어버리게 될 것입니다.
예를 들어 위 함수에 cos(ㅠx)를 곱하면 그래프가 다음과 같습니다.
t=1일 때 구간 (-\infty, 0)와 구간 (2, \infty)에서는
g(x)가 아무런 힘을 쓰지 못하게 되었고,
구간 [0, 2]에서는 곡선 g(x)의 그래프와 비교할 때
각각 x=t-1과 x=t+1에 해당하는 부분에 가까울수록
그래프가 0에 더 가까워졌음을 확인할 수 있습니다.
미분해서 도함수의 부호를 조사하는 것도 의미가 있겠지만
직관적으로 생각해 볼 때 x절편 조사해두고
기존 곡선보다 조금씩 y축에 더 가깝게 그래프를 그려주면
간단하게 이해해 보는 데 도움이 될 수 있겠습니다.
a=-3, b=-4 정도로 예시를 들어보았을 때
함수 f(x)-|f(x)|의 그래프는 다음과 같습니다.
f(x)의 함숫값이 음이 아닌 실수일 때는 0을,
음의 실수일 때는 그것의 두 배인 값을
함숫값으로 하는 함수임을 확인할 수 있습니다.
만약 함수 f(t)-|f(t)|를 구간 [0, x]에서 적분한 것을
x에 대한 함수 h(x)라 생각해 본다면
(a, b)=(-3, -4)인 경우에 h(x)는
어떤 양의 실수 k에 대해 구간 (-\infty, -k)와
구간 (k, \infty)에서는 상수함수이고
구간 [-k, k]에서는 감소한다 생각할 수 있겠습니다.
비슷한 맥락입니다.
f(x)는 대충 sin함수이고 f(ㅠx)도 마찬가지입니다.
g(x)는 구간에 따라 0 또는 1을 함숫값으로 가집니다.
g(x)=0인 구간에서 f(x)는 소멸하고
g(x)=1 구간에서 f(x)는 유지될 것입니다.
이러한 논리로 두 적분값을 확인해 보시면
어떤 값 k가 양의 실수 p에 대해 0 이상 p 이하일 때
k=p가 되어야 하는 느낌으로 풀이를 이어가실 수 있습니다.
(나) 조건에 g(x)에 곱해져있는 두 함수의 그래프를 확인해보면 다음과 같습니다.
먼저 함수 |x(x-1)|+x(x-1)의 경우
구간 (-\infty, 0)과 구간 (1, \infty)에선 0을,
구간 [0, 1]에서는 각 x값에 대해 2x(x-1)을 함숫값으로 합니다.
함수 |(x-1)(x+2)|-(x-1)(x+2)의 경우
구간 [-2, 1]에서는 0을,
구간 (-\infty, -2)과 구간 (1, \infty)에서는 -2(x-1)(x+2)을
함숫값으로 하는 것을 확인할 수 있습니다.
여기에 어떤 함수 g(x)를 곱한다면
구간 별로 영향력이 변할 것입니다.
강해지거나, 줄어들거나, 사라질 것입니다.
강화, 약화, 소멸이라고도 이야기해 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
집에서 니가 수능을 보던 말던 별 상관없고 놀라워하지도 않는다.. 니가 살았는지도 모른다..
-
기하 만표 143 이면
-
수학한문제가계속아른거리네 29번은예상범위에없었어틀릴줄몰랐다고....
-
와 상상도못했다
-
이미지 써드림 13
ㄱㄱ
-
올해의 밈 1
5월부터 지금까지 계속되는 이 드립 "정상화"
-
환급형이 안 된다는건가? 가격이 더 오른다는건가? 아시는 분 있으면 알려주세요!
-
휴르비 전 무물 2
고고
-
왜계속떨어짐 ?
-
전 내일 여자친구랑 놀기로 했는 데 여자친구가 아직 없다네요~
-
라인 같은 걸 몰라서 궁금해요 어느정도일까 대체..
-
물어보는게 이상한건아는데ㅠ 수학 96 100맞으면 높2까진 커버되려나
-
집에 가려면 야간에 고속도로를 타야해요
-
수면시간 0
다들 몇시간 자시나요? 수시 챙기는 고등학생인데 몇 시간이 적절한지 고민입니다. 늘...
-
맞팔구 1
https://orbi.kr/00070001071/%EB%B2%84%EA%B1%B0%...
-
맞팔 할 사람도 구함다..!!
-
시립대 고속 0
지금 적정이면 나중에 떨어지더라도 추합 안정권에는 있을수있는건가용
-
술 맛없지않음? 8
왤케퍼마심뇨
-
고대보내주세요 3
안깝칠게요 아무과나
-
화미생지 85 94 4 89 87 경희대 국캠 될까요? 중앙대 가고싶긴 한데..
-
노란통닭 주문했어요 12
집가서치맥을즐겨볼거에요 너무좋아요
-
에피는 앵간하면 잘 가긴하던데
-
요즘 일기 쓰는데 일기 넘 좋은 것 같아요
-
다까먹어서 못풀겠음 화학 버려!
-
지방대 취직 6
흔히 말하는 4년제 지방대 혹은 지잡대 나오시고 취직하신 분 계신가요? 인서울은...
-
PQF'넓이 구하는거 아닌가요? (Q는 접선의 y절편) 문제를 잘못 읽었나,,,ㅠ...
-
사문정법으로 사탐런하면 갈슈있는 중상위대학 공대 많이 줄어듬?
-
일반 PN접합 다이오드도 순방향 바이어스 걸렸을 때 LED처럼 자유전자의 에너지가 낮아지나요?
-
ㅈㄱㄴ
-
설대 인문ㄱㄴ? 7
오직 '인문' +내신 일반고 3.5 3.5 6.9 정도인데 cc뜨나요?
-
소신 발언) 노잼임
-
“수업 안 나오면 결석처리됩니다“ —> 이게 어케 협박임 ㅋㅋ 시위할 거면 결석...
-
ㅠ
-
그냥 학교생활 하고 중간 기말때 시험 공부하고 나머지에 수능 준비 하는 거임..?
-
팀플 재밌긴 한데 힘들다 ... ㅋㅋ
-
고2 자퇴생이고 내신때 어느정도 했어도 이제 다 까먹었을거라 노베랑 다름없는데 일단...
-
고속 표점 입력 3
고속에서 원점수 입력해서 나온 표점과 메가에서 나온 표점이 상당히 차이가 잇는데...
-
생1 아주 오래전 내신에서만 해보고 아예 해본적이 없는데 이번 수능에서는 화1이랑...
-
문제집 정리된 것 풀어본 후에 수분감으로 추가학습할 예정입니다. 기출문제집 한온기랑...
-
수능 보느라 3년은빨리 늙은듯 스트레스로
-
3모 깔끔하게 만점받고 입시흐름 타봅시다!
-
그냥 물리할란다
-
위에꺼는 텔그 기준이고, 진학사는 처음엔 3칸이었는데 지금은 6칸이고 실제 지원자...
-
수학을 못보면 원래 다 불리하다뜨나요 진짜 개너무하네 ㅡ..ㅡ
-
학교 동기들이나 친구, 동생들이 의대장기휴학하니까 군대가려고방향을틀더니 많이...
-
국어 커리 추천 1
11모 1컷 / 25수능 화작 86 고1 겨울방학에 강기본 완강하고 고2 여름방학에...
-
어느 쪽이 더 잘 맞췄나? 파란색으로 칠한 것이 실제 등급컷과 유사하게 예측한...
-
언제쯤 오르비식 노베가 될까
오 뭔가 저랑 사고방식이 비슷한 부분이 있군요 좋은 글 잘 보고 가요~
이거 진짜꿀팁인데
전 아니에여ㅠㅠ 직관적으로 푸는걸 좋아할뿐..