[수학] 20번이 신유형이라고?
게시글 주소: https://a.orbi.kr/00070170392
안녕하세요
오르비 수학강사 이대은입니다.
2025학년도 수능이 끝나고
첫 글인 것 같네요.
이 글은 25학년도 수험생보단
26학년도 수험생에게 더 도움이 될 거예요!
이번 수능 정말 애매합니다.
등급컷에 대한 이야기도 모두 다르고,
그래서 난이도가 쉽다는 건가
어렵다는 건가
애매하죠.
아마 내년 수능을 준비하는 학생 입장에선
많이 난해함을 겪지 않을까란 생각을 합니다.
오늘의 글 주제는
2025학년도 수능 20번처럼
신유형이 등장했을 때를 대비하는 방법
에 대하여 글을 적어볼까 합니다!
1. 사실 신유형은 없다.
자극적으로 부제목을 정하긴 했으나
저는 수업할 때
이 세상에 신유형은 존재하지 않는다.
라는 말을 정말 많이 합니다.
결론부터 말씀드리면
우리가 느끼는 신유형이라는 문제들은
기존에 존재하던 유형들의 조합이 새로울 뿐
과거에 없던 유형이 등장한 건 아닙니다.
이번 2025학년도 수능 20번을 통해 위의 말을 이해해봅시다.
이번 시험지에서 가장 신유형이라고
평가받는 문항입니다.
이 문제가 신유형이라고 평가받는 이유 중 가장 큰 이유는
문제에서 요구하는 k값을 구하지 않고
풀어야 하기 때문입니다.
최종값에서 괄호 안의 값을
함숫값으로 나타내고 조건에 주어진 항등식 관계를 이용해야 답이 나옵니다.
이와 같이 미지수를 구하지 않고
문제에서 요구하는 최종값을 직접 구하는 문제는 이번이 처음이 아닙니다.
제가 기출분석 강좌 선에서 강조했던 문제 중 한 문제인
아래의 15년 10월 교육청 나형17번을 보시면
마찬가지로 a를 구하지 않고
직접 최종값을 구하는 문제입니다.
완전한 풀이를 설명하진 않겠지만
이 문제는 삼각형의 넓이를 a로 나타냈을 때
와 같은 식이 등장하며 a의 값을 몰라도
답을 구할 수 있게 됩니다.
15년 문제가 도형을 이용한 문제로
삼각형의 넓이를 문자 a를 이용하여 나타낸 식의 형태에서
최종값을 끌어내는 문제라면
25학년도 수능 20번은 항등식을 이용한 문제로
문제에 주어진 함수와 항등식의 형태를 이용해
최종값을 끌어내는 문제 입니다.
도형과 항등식은 누구나 알 수 있는 큰 유형이므로
25학년도 수능 20번은 완전한 신유형이 아님을 알 수 있습니다.
물론 지금 이 문제는
최대한 한 문제와 억지로 유사함을 끌어냈지만
보통의 경우 여러 문항들에 들어 있는 각각의 유형들을 이용해
한 문제가 만들어지는 경우를 따져보면
훨씬 더 유사함을 보인다는 것을 알 수 있습니다.
2. 너무 결과론적인거 아니냐,,?
억지라고 느껴질 수 있습니다.
하지만 이런식으로 기출문제를 접근하지 않는다면
즉, 과거에 경험한 문제들을 이용해 수능에서 도움을 받을 의지가 없다면
우리는 왜 기출문제를 중요시해야 하나요?
여기서부터가 핵심입니다.
이미 존재하는 유형이다.
라고 말하고 글을 끝내면 아무 의미가 없죠.
결국 모든 시험지에 등장할
이런 문제들을 대비하기 위하여
과연 어떤 공부를 해야 하는가
라는 고민을 해야 합니다.
물론 우리가 10문제의 기출문제를 공부하고
여기서 4-5개의 문제가 수능에 나오는 게 아닙니다.
몇 백, 몇 천 개의 기출문제를 공부하고
이 중에서 30문제가 나오는 것이죠.
심지어 4점 문항만 고려하면
13문제가 나오게 됩니다.
따라서 우리는
기출문제를 얼마나 어떤 문제를 푸느냐
보다
기출문제를 어떤 방식으로 학습하느냐
가 훨씬 더 중요합니다.
나중에 칼럼으로 한 번 자세히 소개하겠지만
가장 올바른 방식을 한 줄로 정의하면
최대한 상세히 유형을 구분하고, 구분한 유형별 풀이법을 완전히 암기하는 것
입니다.
예를 들어,
위에 25학년도 수능 20번을 기출분석에서 다룬다고 했을 때
다음과 같이 정리할 수 있습니다.
만약 지금처럼 모든 기출문제를
꼼꼼하게 정리하고 암기했을 때
결국 신유형에 대한 대비는 생각보다
뻔하고 쉬운 방법을 통해 할 수 있는 것이죠.
이건 신유형에 대한 대비 뿐만이 아니라
수학공부에서 특히 기출분석에서 가장 중요한 방향성
입니다.
*자세한 문항 설명이 필요한 분들은 아래 영상을 참고하세요.
오늘 글은 여기까지입니다.
사실 내용을 깊게 적으려다
수능이 끝난지도 얼마 지나지 않았고,
내년 수험생 분들은
아직 기말고사 대비로 바쁠 것 같아서
맛보기 느낌으로 간략하게 적었습니다.
곧 상세하게 적은 글로 돌아올게요.
25수험생 분들은 정말 고생 많으셨고
26수험생 분들은 저와 같이 내년에 파이팅합시다.
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 증가
현) 매시브학원 대치, 경복궁, 분당
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
끄아악
-
시냅스 0
뉴런 하고 있고, 자이랑 시냅스 중 하나 하려고 하는데 뭐 풀어야 함? 공통은...
-
성균관대학교 율전 학생들을 위한 1학년 교양과목 추천(2) 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
현우진 강의 중에 시그마 Sn <<<이거 어디서 나오는건가여?? 시발점 미적분 상...
-
https://unova.co.kr/
-
오랜만에 글 써봅니다. 처음 뉴스 나왔을 때 무슨 1주일 인턴십이냐며 조롱도 많이...
-
아껴둬야지 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
덕 내놔 덕 100덕씩 내놓으세오
-
이러면 xdk 더 주나요?
-
악몽 꿨다 1
눈떠보니까 시대 기숙사 산책로에 있었음 뭐지 해서 워치 보니까 3월 23일 오후...
-
제설하시는 분들 파이팅ㅠ
-
무려 착한맛입니다 네... 그렇게 됐네요...
-
대전 3월 더프 0
대전에서 외부생으로 3월 더프 본 경험 있으신 분 있나요?
-
헥헥헥 2
멍멍 월월월 으르ㅡ르르륵
-
2406, 2409, 2411 2506, 2509, 2511 안녕하세요 제목이...
-
피곤해 2
자야지
-
진짜벽느끼네...
-
초거대스트리머가돼서내채팅도안읽어줌 ㅠ
-
설잡대 지금이라도 좀 해라
-
오늘 나왔으려나? 저녁때 같이 밥먹자고 꼬셔봐야지
-
나름 암산 그래도 꽤 괜찮은편이라생각했는데 솔직하게실망함 아
-
만덕만 주세요. 진짜 여러분들의 개가 되겠습니다.
-
수학 풀 땐 발랄한 플리 국어 풀 땐 가슴찢어지는 동양풍 플리 듣는데 ㄱㅊ?? 두...
-
노트북 - 4년 된 그램 보유 중 탭 - 없음
-
점심시간이끝나는시간 아. 영어하기싫다
-
25 수능 50점입니다 학교는 아직 안 정해졌어요
-
과탐 조합 0
진정이과는 물화 타임어택 심한 화생 국밥 물지 의외로 괜찮은 화지 패션이과는 생지...
-
다들 절 속인거예요? 19
제보를 몇 개 받았어요…
-
의치 언매 화작 0
치대 미련 못버리고 다시 돌아온 사람입니다...ㅎㅎ 목표는 치대 아무데나이구요...
-
염탐하는 부계정 같은거 스토리올리면 많이 떠? 보통 그런계정 어케처리해? 염탐부계정...
-
님들 사탐런하지마세요 17
님들 사탐런하지마세요 체질이라는게바뀝니다 예를들어 초식공룡과 육식공룡이잇는데요...
-
피곤해 8
스카가기싫어
-
잘하면 나도 가능할지도
-
초 코 에 몽
-
Xdk 6,000정도 쓴듯
-
이 악마들아 11
옯뉴비 탈릅하게 만드네...
-
개인적으로 경제는 선지들을 각각 타임어택이라서 한문제당 선지별로 5번풀어야한다는게...
-
피카피카 0
핔카츄
-
ㅠㅠ
-
이제 다시 1
가볼게요 저녁때 뵙도록 하죠
-
집에 암산 꿀팁 담겨있는 책 있는데 지금은 ×89면 90 곱하고 1 빼는 이렇게...
-
ㅠ
-
3시간 자고 깨서 그런가 국어 푸는데 글이 안 읽힘 방금 읽은 문장도 기억이 안나고...
-
다들 말이 다른데
-
30점대드디어뚫었다 하
-
채용조건형(우선채용) = 딴 계약학과랑 동일 (4년 장학금도 주니까 뭐가 다른건지...
-
오우석씨제발장학퍼주세요
-
집가고 싶다 10
그래도 9.2%함
으흐흐
잘 읽었습니다 좋은 학습 자료 올려주셔서 감사드립니다
'복잡한 형태의 최종값은, 개별로 구하지 못할수 있으며 set값으로써 구해야할때가있다.' 라 말씀하신거맞지요?? 이런 접근은 중학문제에서도 자주 나오더라구요 ㅎㅎ
오호 맞습니다! 뭔가 말씀하신 게 더 고급진 표현 같네요 :)
분야는 다르지만 좋은 글 잘 읽고 갑니다
기출문제 열심히 풀어본 입장에서 미지수값 일일이 구하지 않고 최종값 얻어내는 형식 꽤 봤죠 예전 나형 30번인가? 알파베타 섞여있는문제, 22수능 13번 등등 당장 생각나는것 여러개 있네요
네네 맞아요
기출을 단순히 경험한다에 목적을 두지 않고 기출을 통해 지식을 학습한다고 생각하면 모든 시험지에 등장하는 문제들이 그다니 생소하게 느껴지는 것들은 많지 않을 거예요 :D
물론 킬러문항은 약간 논외지만요 ㅎㅎ
신유형×
낯설다o
맞죠 이렇게 보는 게 가장 맞는 표현입니다!
안풀려서 울뻔했어요...
괄호 안은 금방찾긴했는데
?->5^-9->함숫값
여기서 앞부분을 봐야되는데 뒷부분만 계속 보고있어서 5트함
ㅠㅠ 현장에서 한 번 안 보이면 찾기 힘들 것 같긴 해요,,
20번은 오히려 내신 준비하는 애들이 더 잘맞았을듯
내신대비 때는 정말 적은 단원을 엄청 푸니 아이디어가 겹칠 것 같네요
이게 맞다 연논 2023 가로등 문제도 처음 접했을때나 집합 표현이 낯선거지 신유형은 아님
오호,, 논란에 연논,,
수능 또한 아무래도 요즘 집합이 수험생들에게 깊게 안 느껴지다보니 조금만 어색해도 체감 난이도가 확 올라가는 부분이 있습니다. :D