-
나 피크민 닮음?
-
나도 2
실친이 볼까봐 쫄려서 사진은 못 올리겠는데
-
눈물날려그래 자꾸 나 왜이래…
-
아루 이쁜듯 2
근데 블아 어케하믄건지모르겟어서걍 안하고잇음
-
본인 최애곡 4
Ghvstclub-Misfit97 한동안 저것만 듣고 다녔었는데 뭔가 다크한 느낌이라 좋았음
-
퓨ㅠㅠ
-
"그녀석"이 업어서 그래.. 하아..
-
Ai ㅇㅈ 2
-
연대 펑크 0
연대 이과 빵 어디어디 난것같나요...???
-
재밋음
-
빽다방에서옛날커피를사서마실때 천원을내고설탕가득호떡을깨물때 계획표의모든계획에체크표가쳐질때(희귀함)
-
울고 있었다면 다시 만날 수 없는 세상이 멋지지 않았는가
-
제가 좋아하는 스타일들 모음
-
유빈 4
유빈아카이브 같은 자료방 더 없냐 추천 좀 해줘라
-
그런게 가능할까
-
요즘 소확행 1
내 몸이 버틸 수 있는 최대 따뜻한 온도로 샤워할 때 창문 열면 영하의 한기가 후욱...
-
아줌마 왜 좋아하냐면서 씨부랄 것들
-
언매 커리 누구 들을까. 언매는 김동욱.
-
우와 와 와 5
K~~~C~~~
-
역시 대 이 유 1
최강 동안
-
이거 봐 5
사진 마다 다르게 나옴 1.5점씩이나 차이나는데
-
듣기전에는 커뮤에서 어렵다길래 무슨 고능아 전용 빡쎈 강의인줄 알았는데 초반...
-
ㅇㅈ 7
대 가 천
-
난 ㅅㅂ 왜 못들어봤지 분명 좋은 공교육 강사인데 드릉드릉이라는 말 쓰는게 조금...
-
쌍수해볼까 13
쌍수 뭔가 해보고싶네
-
제2외로 한문 할만한가
-
원래 잘했던 사람들 말고 등급 낮았다가 높아진 분들중 답주시면 좋을거같아요 저처럼...
-
. 4
. . . . 조회수 확인용 도대체 왜클릭…?
-
나도 여르비 할래 헤응
-
왜 일반하고 점수가 다르요?
-
킹치만 고닉들이 아니면 댓글을 안달아주는걸…
-
잇올이나 러셀같은데 15
담배펴도 되나용???
-
추억의 장소 0
군수 2학교
이건 5다
ㅈ..정답..!
이게 뭐야
와 이걸 맞혀?
발문이 어디서 본거같은데
3월 가형 30번이었나
2018 9평?
f(x) = t√x + x(lnx - 2)
f'(x) = t/(2√x) + lnx - 1
|f(k) - g(k)| = g(k), f(k) = 0 or 2g(k)
lim(x→0+) f(x) = 0 이고 f(x)가
구간 (0, ∞)에서 증가하면서
y = |f(x) - g(x)|가 x = k에서 최소이므로
f(k) = 2g(k), f'(k) = g'(k),
g'(k) ≥ f(k)/k → kf'(k) ≥ f(k)
여기서 k = h(t)이면 kf'(k) = f(k)이므로
t√k/2 + klnk - k = t√k + klnk - 2k,
t²k/4 = k², k = h(t) = t²/4
→ h'(t) = t/2, h'(10) = 5
정확합니다!
저 g'(k)≥f(k)/k 는 어떻게 나온건가유..?
아니 제발 해설 좀 궁금해서 일상생활이 불가능해요....
다른 건 알겠는데 저 부등식이 평균변화율로 관계식 만든 건가요??
그래프 직접 그려보니, x=k에서 최소이려면, f(x)의 x=k에서의 접선이 0,0 을 지나야 하는 게 k의 최소네요...
그래프만 잘 그렸다면 바로 보였을 텐데 아볼 위볼 파악을 잘 해야 했네요...