통통이가 만든 수학2 고??퀄 준킬러 자작문제
게시글 주소: https://a.orbi.kr/00070871676
확통스러운 케이스분류를 통한 수학 2 준킬러를 만들어봤습니다
아까 확통 문제가 생각보다 반응이 좋아서 문항공모 제출안하고 올려봐요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
PH 중화반응 식초 기체추론 동위원소 양적관계 몰농도 산화수 짜맞추기 등등...
-
숙대랑 숭실 수시 어문계열로 둘 다 붙었는데 로스쿨 쪽 생각이 있어서 숙대...
-
보통 쉬운 편임 다 주어져 있을 확률이 높은 거라
-
학벌을 떠나서 지능이 낮은 사람은 진짜 만나기가 쉽지 않음 근데 학벌이 어느정도의...
-
아침저녁으로 4시간씩 끊어서 두 번 자네요
-
재밋는 미연시 게임 중 13
두근두근 문예부
-
인하공전 항공운항과 스튜어디스 지망생 분들이라 키도 크고 외모도 ㄷㄷ
-
학벌좋고 외모좋고 성격좋은 사람들 꽤 있음 ㅇㅇ..
-
얘 내년에 입을 과잠을 내가 선택한다고 생각하니까 소홀히 할 수가 없음 ㅋㅋ
-
68 95 99.7 10
보통 신뢰구간 구할 때는 a=0.05를 쓰죠 점공에서는 예측 구간이라고도 합니다
-
제목 그대로 입니다. 문닫고라도 들어갈 수 있을까요?
-
대학을 더 잘가던데 ㄹㅇ루
-
기차에서 잠안올것같은데 유튜브영상보면 멀미나나여?? 기차별로안타봐서몰라여..
-
벌레 ㅈㄴ 싫음 5
그냥 순간 몸이 굳고 패닉 옴 극복불가능 극복한 사람 있음?
-
이거 꼭 해야해요? 책값 왤케 비쌈 그냥 개념 확인용같은데
-
그냥 국숭세단까지면 ok 너무 학벌을 많이 보고 싶지도 않기도하고....
-
연애하고 싶다 0
ㅏ
-
Z
-
삽 졸린데 8
애들 사이에서 못 자겟어
-
고2 모의고사때 쭉 1이었고 10월때 2등급(구차한 변명이지만 이때 1등급 비율이...
-
그냥 동문이랑 사귀는 게 깔끔할듯요 cc는 좀 아닌 것 같고 같은 사과대라면...?...
-
지금 노는거 조금씩 줄여서 대학 잘 가고 줄인거 수능 끝나고 순도 100퍼센트로 놀...
-
이거 떨어지면 1
하늘이 절 버렸다고 생각할게요..
-
매직키보드 실까 고민되는데…
-
더러운거 질색이에요;; 편의점 바퀴벌레때문에 관둠 쿠팡은 육체적으로 힘들어서 ..
-
마음에 들어요
-
궁금하네요
-
윤석열은 9수까지해서 사시패스를 했는데 조국은 사시패스도 안하고 설법 교수된거 ㅇㅇ
-
말안된다……
-
작년에 학원끝나고 걸어가고 있는데 길에서 사람보고 하수구에 뛰어드는 쥐봐서 충격먹었음
-
잠은 안 오네요
-
점공 업뎃완료 6
오늘 두명이나 들어왔네용 제발 최초합기원!!!
-
군필 03년생이고 이번에 휴학하고 공부하는데 수학개념을 많이 까먹어서 시발점부터...
-
롤케이크 맛있어 2
-
내일도 안좋으면 병원가야지..., 다들 굿밤되세요ㅜ
-
ㅅㅂ 팔만전자 되는 순간 다 팔아버린다
-
제2외국어 보는반이 분위기 좋다는 말도 있던데요
-
기차지나간당 6
부지런행
-
진심 트라우마 ㅜㅜ
-
개념강의가 가장 좋았고 판서좋아인간이라 더 잘 맞았나봐요 풀커리 탔고 수능날 아침에...
-
시ㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣ발 ㅠㅠㅠㅠㅠㅠ
-
되찾아 오자꾸나 가보자 가보자~
-
근데 성적도 재밌어질거같아서 못하겠음
-
초딩인가 중딩때 인형뽑기 오락실 잠깐 유행하고 그뒤로 싹 사라졌는데 디시 우후죽순생김
-
군대 가면 생각보다 내 학벌이 나쁜 게 아니어서 놀랐네요. 1
지방 국립대 문과 출신이라 속된 말로 하위 10%일 줄 알았는데 군대에서는 이것도...
-
슬슬 합격발표일을 위한 마음의 준비나 해둬야겠군요 설날이 코앞인데 부디 어깨 펴고...
오 유명인..
오 문제 이쁘다
히히
f(-1)=0, f(0)=-1, f(1)=1인 케이스 맞나요?
네 맞아용
전국서바에ㅜ있을거같은 비쥬얼
벌써 못풀겠다
일단 집합있으면못풀어
학습자료 태그를 까먹었네요
해설지 쓸 때는 엄밀하게 하려고 평균값정리 이용해서 작성했는데, 대충 그래프 몇개 그려보면서 될 거같은 개형 특정하는게 실전적인 출제의도입니당
351 인가요??
!맞아요!!!
혹시 어떻게 푸셨는지 간단한 풀이 공유 가능하신가요??
그낭 그래프 때려맞추기 했어요.. ㅋㅋㅋ 최고차항 계수가 양수니까 뒤의 2차 함수의 도함수값이 -9/8보다 작아야 한다라고 생각하니까 좀 더 빨리 구해지긴 하네요
감사합니다!
간단해설
집합 조건에서 S={-1, 0, 1}이고
집합 {f(-1), f(0), f(1)}은 S의 부분집합입니다
또한, f(f(-1))=-1, f(f(0))=0, f(f(1))=1이 됩니다
이를 바탕으로 가능한 순서쌍 (f(-1), f(0), f(1))을 찾으면
(-1, 0, 1), (0, -1, 1), (1, 0, -1), (-1, 1, 0)의 네 가지를 찾을 수 있어요
근데 x=-3/2에서 -1보다 작은 미분계수가 등장하니까
평균값정리를 사용하거나 그래프를 그리다 보면 가능한 케이스는 두 번째 케이스밖에 없게 됩니다
이후에는 식을 세워서 좀 더럽긴 하지만 계산하면 답이 나옵니다!