미적분 증명 오류 봐주세요
게시글 주소: https://a.orbi.kr/00071061621
재업 ㅈㅅ합니다 사진 첨부가 안 돼서요ㅠ
지수함수 도함수 증명하다가 e^f(x)의 도함수를 라이프니츠 미분 말고 다른 방법으로 구하고 싶어서 도함수의 정의 써봤는데 다르게 나오네요
어디가 오류인지 찾아주실 스승님 계신가요
그리고 문제집 증명 보면 라이프니츠 미분으로 증명하던데 그래야 하는 이유는 무엇인지요?
***해결됐습니다 감사합니다!!***
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저능아처럼 행동함 예를 들어 너 어디살아? 노무현 수능 잘봤어? 엉덩이 대학...
-
인스타 보다가 4년연속 수능 수학 100점 발견함 14
ㄹㅇ어케햇노? 부럽다
-
저는 고3때랑 재수때 모두 수능끝나고도 생리를 안했거든요 고3때는 수능끝나고 1월에...
-
선넘질문 6
을 제가하겠습니다 님들 여친없죠?
-
나도 호감 고닉이 될테야
-
일단 오르비언들은 현실적으로 넓은의미의 지성인에 속함
-
선넘질받해볼래요 13
재밌어보여 질문좀
-
재수고민 2
원래 군수 할라했는데 공군 스펙쌓고 신검받고 하면 5월안에 입대를 못함. 그래서...
-
선넘질받 10
나도 해볼래
-
그 다음으로는 뉴턴역학시간해석열역학전기력자기장파동빛반사가 재밌어요 그리고 일과에너지는 재미없어요
-
저도 질받 18
아무거나 ㄱㄱ 신상이나 너무 과한 것만 아니면 적당히 선 넘어도 ㄱㅊ 설거지 하고 옵니다
-
진학사댓 뭐지
-
진짜 미친거아님? 아직까지 안오네 대성 들으러간다 ㅅㅂ
-
나 울어
-
알바 추천점여 2
또래 많은 사람 많은 알바 없나여 편의점 카페 피방 이런 혼자나 둘이서만 하는...
-
뻥임뇨
-
20살 모쏠녀인데 15
대학가면 모쏠 탈출할 수 있을까요 ㅠ..
-
여기서도 찐따야
-
독해의 끝 16
여러분의 독해의 끝. 국어 독해에 있어 가장 중요한 것이 뭐라고 생각하나요?
-
선넘ㄱㄱ 4
네
-
급궁금
-
크게 보자면 인서울 수도권 지방 전문대 고졸
-
아잇쿵!
-
상당히 높던데.
-
개화지문을 경제로 바꾸고 어려운 단어랑 비율 때려박았으면 킬러였을듯
-
환율 정상화 0
크아아
-
문제대충 봣을땐 사고력보단 걍 범위가 개넓어보이던데
-
저 수리논술 진짜 잘봐줄 자신있는데 경력없어서 인기없나바요 제 전문분야가 서술인대
-
중경외시에서 이번에 설대 약스나 떨어지면 연대 교차로 갈 듯함 대깨 메디컬이라...
-
300명 뽑는 대형과고, 초반엔 최초합, 중간부터 추가합격으로 바뀌고 그대로...
-
학벌 좋은 ㅂㅅ들많네 15
오르비를 보며 느낀다 이래서 우리나라 정치판이 개판이구나
-
질문을받아요 21
저는 순수하기때문에 선넘으면 고소할거에요 ㅜㅜ
-
개정이후 독서 문학 언매 22 상 상 중상 23 중상 하 중상 24 중 상 상 25 ? ? ?
-
안하면 도태됨?
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
ㄹㅇ 있다했을때 시킬만한게 안 떠오르네
-
중경시 컴공인데 내년 6월 전역이라 군수도전해서 26,27수능 응시로 더 높은 학교...
-
그래야 나도 잘생겨지거든
-
안녕하세요 나리입니다. 평소 제가 쓴 글을 보면서 경악하시는 분도 있고 어이없어서...
-
노래가맛집이야
-
사문vs경제 15
진짜 고민되네...
-
요루시카노래는 3
후렴에 잔잔하고 부드럽게 깔리는 나부나 코러스가 좋음
-
헤헤... 질문 없으면 글 지우고 잠이나 자야지...
-
선넘질받 10
흐흐
-
만표 만백 박살낼것같은데..
-
갠챠나 0
닝닝닝닝닝 니링링닝닝닝
-
선넘질받 오픈 14
ㅈㅇ스토리 풀러감
g'(u)=lim 부분에서 h가 저런 식으로 쓰이면 안 됨
왜 안 되나요??
e^f(x+h)-e^f(x)로 적용이 되어야지
e^{f(x)+h}-e^f(x)가 되면 이상해짐
아 이해했어요 감사합니다
말 그대로 u에 대해 미분한 것인데요. 합성함수 미분을 증명하고 싶으시다면 x에 대해 미분한 것으로 증명해야 할 것입니다. 저렇게 식을 쓰면 u 자체를 변수로 보아 u로 미분한 것이 되는거죠.
아하 그렇군요 고수님 감사합니다 ㅠㅠ
여기에 첨언하자면,
뉴턴식에서는 미지수를 임의로 지정했을때(혹은 2개 이상이 나올때) '(프라임)이 뭐에 대한 미분인지 확실하게 보여주지 않는 문제를 확인할 수 있습니다.
그러기에 뭐에 대해서 미분한다는 의미기호가 확실히 들어간 라이프니츠를 이용하죠
윗 식은 f(x)에 대해 미분한 식이고, 선생님께서 내리시고 싶은 결론을 도출한 식은 x에 대해 미분한 것이므로 다른 것입니다.
제가 잘못 이해한걸수도 있는데 h'(x)=g'(f(x))가 어떻게 되는건가요
그냥 제가 임의로 g합성f = h라고 잡았습니다..
그러면 h'(x)를 미분하면 g'(f(x))f'(x)가 되어야지 g'(f(x))가 되는 이유가 뭔가요
오
h'(x)가 아니라 h(x)
h 미분하고 원함수에 f'(x)를 곱하면 맞게 나오네요
h로만 생각해서 형태만 본 것 같아요
감사합니다!!!
네 해결되셨다니 다행입니다
확실히 알았어요
다들 감사드립니다