Orbi지형T_[점수를높이는5M.Column] Ch2.등비수열,수열의합'지형도를그리다'
게시글 주소: https://a.orbi.kr/00071447980
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
Orbi_Column_김지형T_수1(수열의합)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH2 Geometric sequence
CH3 Sum of a sequence
오늘 소개해드릴 챕터는 등비수열과 수열의 합 파트입니다. 첨부파일에는 등차수열/등비수열과 수열의 합 개념 부분만 올려두었어요. 이 자료는 현강에서 설명한 내용을 정리한 것으로, 필요하신 경우 다운로드하여 읽어보시면 큰 도움이 될 거라 생각합니다.
등비수열과 수열의 합은 등차수열 파트와 달리, 기출문항 중 중요한 문제는 많지 않아서 개념 위주로 정리하였습니다.
그럼 시작해볼게요!
Chapter 2: 수1 등비수열
(Geometric sequence)
등비수열은 무엇보다 공비를 직관적으로 파악하는 능력이 가장 중요합니다. 등비수열의 핵심은 각 항이 일정한 비율(공비)로 이전 항과 연결되어 있다는 점인데요. 공비를 빠르게 이해하고 활용할 수 있다면 문제를 푸는 속도가 훨씬 빨라질 뿐만 아니라, 다양한 응용 문제에서도 효과적으로 접근할 수 있습니다.
이와 같이 다양한 등비수열의 공비를 빠르게 파악하는 능력은 문제를 해결하는 데 있어 매우 중요한 역할을 합니다. 공비는 등비수열의 구조를 이해하는 열쇠이자, 다음 단계로 나아가는 출발점이 되기 때문인데요. 공비를 빠르게 파악하면 수열의 일반항을 구하거나, 합공식을 적용하는 데 훨씬 수월해집니다.
특히, 미적분에서 자주 등장하는 등비급수를 계산할 때도 공비를 정확히 이해하고 활용하는 것이 핵심입니다. 예를 들어, 등비급수의 합을 구할 때 사용하는 공식은 모두 공비의 성질에서 출발합니다.
공비의 크기(절대값)가 1보다 작을 때, 등비급수의 합은 극한값으로 수렴하게 되는데, 이는 무한급수 문제를 푸는 데 매우 중요한 개념입니다. 이때 공비를 빠르게 파악하고 공식에 대입하는 과정이 자연스러워진다면, 복잡한 계산도 한결 쉽게 해결할 수 있죠.
이번에는 등비수열의 합 증명 과정에 대해 살펴보겠습니다. 등비수열의 합 공식을 정확히 이해하고 유도 과정을 기억하는 것은 문제 풀이뿐만 아니라 수학적 사고력을 키우는 데도 큰 도움이 됩니다. 특히 공식을 단순히 암기하는 것에 그치지 않고, 유도 과정을 이해하면 다양한 문제 상황에서도 유연하게 응용할 수 있게 됩니다.
Chapter 3: 수1 수열의 합
(Sum of a sequence)
**(5)**번 문제는 모의고사 기출문제를 풀 때 종종 등장하는 형태로, 한 번 익혀두면 매우 유용하게 활용할 수 있는 유형입니다. 특히, 이 문제는 **(1)**번과 **(2)**번의 결과를 더해 정리한 것이기 때문에 구조적으로 간단하고 이해하기 쉬운 편입니다.
등차수열과 등비수열의 합 공식은 다양한 문제를 빠르고 정확하게 해결하기 위해 꼭 알아야 하는 핵심 도구입니다. 이 공식들을 제대로 활용하면, 복잡해 보이는 문제도 단순한 계산으로 빠르게 정리할 수 있어요.
오늘 다룬 내용은 비교적 어렵지 않지만, 개념을 몰랐던 학생들에게는 매우 유익한 정보가 될 거예요. 무엇보다 중요한 건, 공식을 단순히 외우는 것보다 그 원리를 이해하는 것입니다. 개념을 제대로 이해하면 다양한 문제에서 응용할 수 있어 학습 효과가 훨씬 커질 거예요.
다음 Column에서는 수학적 귀납법에 대해 다룰 예정입니다. 특히, 작년 6월/9월 모의평가와 수능 22번에서 출제된 문항들을 깔끔히 분석하며, 최근 귀납법 문제가 어떤 흐름으로 출제되고 있는지 한눈에 정리해드릴게요. 이를 통해 귀납법 문제에 대한 이해를 쉽게 높이고, 실전에서 바로 적용할 수 있도록 도와드리겠습니다.
혹시 오늘 다룬 내용을 더 자세히 배우고 싶다면, Orbi 인강에서 확인해보세요. 제가 직접 준비한 강의에서는 개념부터 문제풀이까지 하나하나 차근차근 설명해드리니, 혼자 공부하며 놓쳤던 부분도 확실히 채울 수 있을 거예요. 수학이 점점 자신있어지는 경험을 할 수 있도록 함께 만들어가는 강의가 되겠습니다.
오늘 하루도 화이팅하시고, 더 나은 내일을 위해 계속 나아가 봅시다!
Orbi 강의에서 여러분을 기다릴게요!
유익했다면 좋아요! 팔로우! 부탁드립니다!!!
그리고 수학 질문 마구마구 댓글 달아주시거나 쪽지주시면하나하나 상세하게 답장해드리겠습니다아아아
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
이번글도 도움이 많이됐습니당ㅎㅎ좋아요 1 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
백악관 새단장…트럼프 책상 위 ‘콜라 주문 버튼’ 돌아왔다 0
20일(현지 시간) 도널드 트럼프 미국 대통령이 취임하면서 백악관도 새롭게...
-
고대는 24일에 일정대로 발표한다 쳐도 님들은 그보다 2주나 늦게 잡아둠 범국민적...
-
인하대 1
인하대 2시네
-
3점짜리 문제도 난이도 차이 많이 났음?
-
냄새 미쳤네 저기 저 앞에서 킁킁대노..
-
수분감 자이 4
예비 고3이고, 수학은 고3모고도 거의 1나오는데, 미적은 아직 많이 안했어요....
-
팜팜팜
-
연고대 학종컷 보니까 뭔 3점대던데 특목고 자사고 이런 애들만 몰려가지고
-
올해 166명 모집에 추합 번호 몇번까지 나올까요 반영비 이슈때매 안 맞다고 잘 안...
-
연애 13
마렵다
-
지금 김범준t 스타팅 블럭 듣고 있는데 개념 강의 듣고 10문제 정도 풀고 해설...
-
저는 사실 존못N수아조씨임뇨 사실 갓반고 안 다님뇨 사실 갓반고 진학할 뻔했음뇨...
-
ㄱㅇㅇ
-
일클 본교재랑 연필통만 사도 될까요? 본바탕은 꼭 필요하나요?
-
한양대 화공 5
최종컷 어느정도일까요??ㅠ
-
탐구 헷갈리는 선지 정리하는 노트처럼 언매도 그런거 만들어야함? 언매도 사실상 탐구아닌가
-
최종컷 어느정도일까요??
-
팁 같은 걸 좀 받고 싶습니다아.. 좋다싶으면 덕코도 드릴게요.. (밥 먹고 다시 올게요ㅛ
-
성대 공학계열 0
최종합 컷트라인 어느정도로 예상하시나요??
-
근데 화학1은 7
어쩌다 빈사상태가 된 건가요? 분명 처음엔 물1이 더 응시자수가 적었던 걸로 기억하는데
-
올오카 독서 들으러 갑시다
-
화지할까 생지할까 고민했었어요 결국 저는 생지를 했고 인생 최고의 선택중 하나였다고 생각합니다
-
尹 측 “선관위, 사전투표용지와 동일 투표지 만들 수 있어” [현장영상] 1
윤석열 대통령이 오늘(21일) 서울 종로구 헌법재판소에서 열리는 탄핵심판 3차...
-
이온 상태가 아닐 때 s전자수와 p전자수가 같은 원소는? 4
O, MG OMG 옴마옴마가앗
-
건국대 합격생을 위한 노크선배 꿀팁 [건국대 25][위인전에 대하여] 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
친구들 만남 4
삼수하고 또 망해서 반수할 예정이라 추합기간까지 신경쓰고 있는데 뭔가 친구들...
-
질질 쌌는데 그때 제3의 눈이 뜨인 느낌이었음
-
쪽지한번 부탁드립니다 ㅠㅠ
-
수학은 수1 수2 미적 중에 아무거나 2개 추천해주고 물리 지구 중에 하나 국어는...
-
요번에 수능 보고 싶어져서 다시 도전하려고 합니다. 공부에 담 놓고 살았던지라 현역...
-
매일 책 추천해주는 남자 이런걸로 꾸준글 올리면 볼건가요? 원하시면 공유해드릴려고.. 명작이 많아서
-
2.0 안나오면 재입학해라
-
올해목표 0
계정 다시 파기 에피받기 의뱃받기
-
수원쪽이고 문과 국수영탐1탐2 54365 였습니다 기숙 아닌 자습시간 많은 곳 있으면 부탁드려요
-
유도하고싶은데
-
체력장 만점은 자신있어요
-
텔레그램 보면 마켓방에서 거래하던데 웬만한 방법으론 신고하면 다 잡히지 않나요??...
-
원래 쓰던계정 탈퇴한날
-
재수 각 잡혀서 슬슬 수학 하려는데 뭐부터 할까요? 개때잡 + 어삼쉬사면 ㄱㅊ?? 작수 수학 93임
-
[단독] ‘中스파이 체포설’ 확산에…주한미군 이어 美국방부도 ‘일축’ 7
한미 군 당국이 지난해 12월 3일 비상계엄 당시 경기도 수원 선거관리연수원에서...
-
송도캠을 더 이상 갈 일이 없는게 참 아쉽다
-
설의vs 15
침대 뭐가더 명문대임?
-
소설류면 아무거나 상관 X ㄱㄱㄱ
-
배달 저메추좀 6
에
-
올해 설의 가능할까요? 언미화생입니다
-
내신 3점댄데 어떡하냐고 묻는 글
-
돌대가리된거같늠 0
진지하게 고2랑 수능배틀 뜨면 진다