생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
게시글 주소: https://a.orbi.kr/00071448904
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
아
-
친구들 만남 4
삼수하고 또 망해서 반수할 예정이라 추합기간까지 신경쓰고 있는데 뭔가 친구들...
-
질질 쌌는데 그때 제3의 눈이 뜨인 느낌이었음
-
쪽지한번 부탁드립니다 ㅠㅠ
-
수학은 수1 수2 미적 중에 아무거나 2개 추천해주고 물리 지구 중에 하나 국어는...
-
요번에 수능 보고 싶어져서 다시 도전하려고 합니다. 공부에 담 놓고 살았던지라 현역...
-
매일 책 추천해주는 남자 이런걸로 꾸준글 올리면 볼건가요? 원하시면 공유해드릴려고.. 명작이 많아서
-
2.0 안나오면 재입학해라
-
올해목표 0
계정 다시 파기 에피받기 의뱃받기
-
수원쪽이고 문과 국수영탐1탐2 54365 였습니다 기숙 아닌 자습시간 많은 곳 있으면 부탁드려요
-
발바닥 젤리 9
앎? 그 착하고 던지면 착 붙는거 젤리 손바닥이었나? 근데 난 발을 더 좋아하긴하는데..
-
유도하고싶은데
-
체력장 만점은 자신있어요
-
텔레그램 보면 마켓방에서 거래하던데 웬만한 방법으론 신고하면 다 잡히지 않나요??...
-
원래 쓰던계정 탈퇴한날
-
재수 각 잡혀서 슬슬 수학 하려는데 뭐부터 할까요? 개때잡 + 어삼쉬사면 ㄱㅊ?? 작수 수학 93임
-
[단독] ‘中스파이 체포설’ 확산에…주한미군 이어 美국방부도 ‘일축’ 5
한미 군 당국이 지난해 12월 3일 비상계엄 당시 경기도 수원 선거관리연수원에서...
-
송도캠을 더 이상 갈 일이 없는게 참 아쉽다
-
설의vs 15
침대 뭐가더 명문대임?
-
소설류면 아무거나 상관 X ㄱㄱㄱ
-
의미 있을까요? 지금이야 강의 들을게 나름 있어서 괜찮지만 방학 끝나면 문풀위주로...
-
배달 저메추좀 6
에
-
올해 설의 가능할까요? 언미화생입니다
-
내신 3점댄데 어떡하냐고 묻는 글
-
돌대가리된거같늠 0
진지하게 고2랑 수능배틀 뜨면 진다
-
개강하면 학교헬스장 등록해야지...
-
나만 ㅈㄴ어려움?
-
아니 그러면 안된다고 하면 안할거임? 왜 물어보는거?
-
국어와의 잔쟁을 선포한다
-
엄마한테 건조기 사는거 어떻냐 물어봐야겠다
-
추석에 친척 만나러 갔다가 "여자였으면 아이돌 했겠네" 들었음 저는 남잔데요
-
화작 미적분 생윤 사문입니다 올해 열심히하면 26수능때 11111 가능할까요 ???
-
뱃지 달렸네 10
-
얼굴과 몸이 좀 많이 다름
-
금요일까지 기다려야하나...
-
프사 변경 완 3
대 창 섭
-
턱걸이 등근육을 써야한다는데
-
안녕하세요! 현재 서울 내 메디컬 재학중인 예비 4학년 학생입니다. 휴학재수를...
-
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는 예비 한국외대학생,...
-
딸이 되고 싶다고 했는데 우셨음 감동받으신건가
-
환각 니지카가 되부렸어..
-
가능성 있다고 보시나요? 홍대 자전 써 보신 분..ㅇㅅㅇ
-
하 상처만 남았네
-
휴~
-
친목질이나 해야겟슴
-
4수했던 화작 기하 설댜목표하시는 분이었는데 어케되셧는지 궁금하네요
-
옯창빙고… 5
하긴 4년차인데 이정도는 되는 게 맞는 거 같다
-
연대입학처 0
하ㅠㅠ