19. 평면벡터 문제 하나 풀고가세요
게시글 주소: https://a.orbi.kr/0008542367
ans.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 실수만 안했어도…
-
별 의미는 없고 그냥 한번 구축해보고 싶었어요
-
오전훈련 끝 0
오늘같은날은 뛰는게 더 빠를듯
-
수능끝난 분들 0
요즘 뭐하면서 시간보내나요? 게임을 해도 시간이 정말 안가네요
-
사진 말고 눈으로 봐야 더 좋네
-
나가기 싫다 ㅠ 0
눈 너무 온단 말이얌,,,
-
∀x(Ex) 이 식의 뜻은 "모든것이 존재한다" 부정형은 ∃x(¬Ex) 이고 뜻은...
-
눈도 안오는디
-
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ 아니 이게 이렇게 슬픈 노래였나......
-
동국대 한의대 1차발표 오늘 몇시에 나옴?
-
체감상 몇백mL는 흘린듯 ㅅㅂ
-
진짜설국이에요 너무예뻐요 다들한번씩밖에나가보세요
-
전교생 앞에서 독서감상문 낭독하는 기분... 빨리 묻혔으면
-
인상적인 꿈 1
쓰고싶은데 원래 꿈은 깨면 다까먹자나
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
결론 : 2020년대생 이후로는 인서울대 프리패스 예정. 아니, 정확히는 지방엔...
-
저 지금까지 5년동안 헛산거같아요.... 이거 진짜 오래된건데 왜 안먹었지...
-
악몽 꿨네 8
꿈속에서 누구한테 버림받고 공황 오다가 깼는데 깨니까 그게 누구였는지 기억이 안난다...
-
이번주 토요일날까지만 다니고 기숙학원 들어가기 2주 전부턴 집에서 쉬면서 준비하기로...
-
그런거지?
-
화2 질문 0
화2에서 꼭 암기해야하는거나 암기하면 문풀에서 수월한것들 있나요?
-
일단 낙지 점공기준 제 앞에 7명 맞춤
-
답인 1번이 대놓고 개소리인거같긴한데 4번이 약간 헷갈려서 정답률이 낮은걸까요?
-
ㅈㄱㄴ
-
수2는 전부 이어지는 내용이라 기억이 나는데 수1은 까먹은 부분이 좀 있네요.. ㅜ...
-
휴학에 참가한 의대생들 전원 사형집행 하기로 결정 25학번 수업은 무리없이 진행될 예정
-
검사했는데 결과는 안뜨고 다시하려면 다시하라그러고 옘병할
-
고시류는 탈락하면 진짜 낫띵인데 의대준비하다가 의대성적 안나오면 낫띵이 아니라...
-
망했어요 오늘은 외진때문에 넘어가지만 내일부터 문젠데
-
28수능부터 시행되는 통사통과로 어떻게 변별할지 너무 기대됨 1
개같이 기대된다
-
나도 작년에 못맞추긴했고 난 맞췄는데 올해 최저 충족률 어케 되려나... n수...
-
연고대 문과 가려면 사탐선택자는 연대로, 과탐선택자는 고대로 3
모일수밖에 없다라는 예측을 봤는데, 나름 일리가 있더군요. 일단 연고대 레벨의...
-
국어 잘한다고 생각했고 이때까진 망해도 백99는 떠왔는데 올수는 진짜...
-
피램 병행 가능한가요? 재수생임 현역 X
-
ㅈㄱㄴ
-
정승제쌤이 어제 롯데월드 간다는건 이미 예견된 일이었음뇨 개때잡 확통 2단원...
-
제가 국어 시간이 오래걸리는 이유가 이거 때문인거 같습니다. 0
예를 들어 8번 문제에서도 1번 선택지에서 "한성순보가 간행된 취지는 서양에...
-
인스타 내리다 떠서 봣는데 H2O의 약자가 뭔가요? 화학고수님 답변부탁드립니다...
-
우리의승리다
-
산속에 난 길이어서 ㄹㅇ 개무서웠음
-
전공탱이라 가야돼...
-
어릴때는 포뇨 아빠가 포뇨 괴롭히는거 때문에 겁나 싫었는데 지금 다시보니까 포뇨...
-
난 xx을 잘해->많이함 이게 무한 싸이클이 돌고 그러는듯 반대도 마찬가디 난 xx을 못해->안함
-
대성은 무조건 수학 1타가 한석원이었던거 같은데
-
난 햇빛만 존나나는데
-
28학년도부터는 정시 100프로로 대학 가는거 없어지죠? 3
내신 구리면 정시길도 막히는.... 그럼 자퇴생이랑 장수생들은 어떻게 되는거지?
-
아아 기대된다 2
나는 어느 대학을 갈것인가!! 어느 지방에서 캠퍼스라이프를 즐길것인가!! 킥킥킥킥킥킥킥
-
예쁘긴하다 햇빛에반사되면더예뻐짐
좋아요!
ㄳㄳ
항상 좋은글 감사합니다
감사합니다
왜자꾸삽질을하지 평벡에서.. ㅇㅅㅇ
*@}>->----
아까 한분 땜에 암걸리는줄...... 제헌이님도 고생많으셨습니다 ㅋㅋ
ㅋㅋㅋㅋ 감정낭비하는것같아 더이상 대응안하려구요... 제르맹님두요 ㅎㅎ
넵 저도 마지막 댓글 쓰고 보니 남이야 어떻게 접근하든말든 뭔상관인가 싶더라구요 ㅋㅋ
저는 알림이 안울리네요 ㅋㅋ 함 확인하러 가봐야겠네요
하아.... ㅋㅋ 또 써놨네요.
ㅠㅠ 보고왔슴니다 ..
마지막 댓글 써놓고 왔습니다. 저도 여기까지만 상대하게요... ㅋㅋ 제가 수능문제도 못풀정도로 실력이 없어보였나봐요 ㅠ 슬프네요
ㅠㅠ
ㅜㅜ형님 ㅎㅇㅌ!
어떤게시물이에요??ㄷㄷ
크..... 언제나 좋은 글과 문제 감사해요. 저 근데 저번부터 올라오는 문제가 17,18,19번이라고 되어있는데 모의고사 한회 따로 만드시는 중인 건가요?
아뇨 ㅋㅋ 번호는 출제될 것 같은 번호를 만들어서 띄우는 것이에요.
따로 한회분 만들어 올릴까요?
만들어 올리신다면야 냅다 절하고 풀죠.
ㅎㅎ
와ㄷㄷ 갓제헌
낄낄
문제 좋네요 이런 문제 만들어서 올려주시는 거 정말 감사합니다!
감사 합니다 .. !
푸러따!
디게 참신하네요 제헌이 모의고사 수록문항인가요?
위에 댓글있구남..
아뇨 ㅋㅋ 모의고사 수록문항은 따로 이렇게 뽑아서 노출시키면 실전 연습시 방해가 될수 있기때문에 출판물 수록문항을 가져오진 않습니다.
게시물로 업로드 되는 문항들은
모의고사 제작 후 탈락 문항이나, 신규 제작 문항입니다~~
참신하고 좋아여 굳굳
감사합니다 ㅎㅎ
역시벡터는꿀잼
ㅎㅎ 벡터는 만드는것도, 푸는것도 꿀잼이네요.
벡터는 평도든 공도든 계산도 적고 진짜 가장 흥미로운 파트인것 같습니다 ㅋㅋ
ㅎㅎ 그랗죠..
평면벡터가재밌네요 특히
풀이 1번에서 B좌표 어떻게 구한거에요?
수직이라는 것과 점 A의 평행이동을 통해 구합니다. ㅎㅎ
점 A에서 평행이동 하는 건 알겠는데 중간 과정좀 설명해주실 수 있으신가요?
점 A의 x좌표를 보면 원점과 거리가 2이고, 각 OAB는 직각,
OA=2AB이므로 점 A와 B의 y좌표 차가 1이 되어야합니다.
마찬가지로 A의 y좌표를 보면 원점과거리가 k이므로
점 A와 B의 x좌표 차가 k/2가 되어야 하구요 ㅎㅎ
ㅇㅎ 감사합니다 문제 잘풀엇습니다
*@}>->----
저 솔루션봐도 어떻게구하는지 모르겠어요ㅠㅠ...
B(x,y)로잡고 수직조건으로 내적, 직선AB기울기 -3/4인거 이용하면 k가 이상하게나와요ㅠㅠ
직선AB기울기 -3/4는 직선 OA기울기 4/3 에서 나온거같은데.. OP의 기울기가 4/3 입니다 ㅎㅎ
수직이 아니네요 지금보니! ㅋㅋㅋ 감사해유
*_^
탄젠트 쓰면 쉽게 풀리는것을 좌표써가지고 20분간 끙끙대다니 ㅠㅠ
암튼 문제 잘풀었음다
9월 모평전에 봉투모의 꼭 사서 풀게여! ㅎㅎ
기하와 벡터 문제는
그단원에 맞게 좌표평면/공간에서의 기하학적인 정보를 이용해야 해요 ㅎㅎ
무조건 숫자로 싸우려 드는걸 고쳐야 겠군요...
좋은거 배우고 갑니다 ㅎㅎ
ㅎㅎ황티이이빈다.
문제 좋아요!! ㅎㅎㅎ
*@}>->----
으핳 선분AB인거 벡터인줄알고 옆에식에 대입하고 오류인가 뻘생각하느라 혼났네요ㅠㅠ 좋은문제 감사합니다~~
ㅎㅎ
a(1,k/2)=b-(2,k)이니까 b(3,3k/2)
p(x,4x/3), a(2,k)=(x-3,4x/3-3k/2)
이렇게 풀었는데 답이 안나오네요 어디가 잘못된건가요;;ㅠ
A(1, k/2) 가 아니에요.
수직이면 일단 비틀리기때문에 부호가 한개는 달라집니다 ㅎㅎ.. 염두해두시면 실수할일 없으실거예요
바로실모구매하게하는문제 대단하십니다
*^^*
와... 문제 대박이네요..ㄷㄷ
진짜 한참 좌표값 잡고 풀다가
에라 모르겠다 하고 탄젠트 합공식으로 풀었는데,
해결법1 원리가 삼각함수인가요??
*^^* sol1)은 점의 평행이동을 이용하는 풀이입니다~~
좋은 문제 잘 풀었습니다^^ goat..
감사합니다.
아아.. 편한 탄젠트 냅두고 코사인이용해서 돌아갔네요...ㅂㄷㅂㄷ sol1은 생각도 못해봤네요..
고로 구매
ㅎㅎ기울기=tan 값
중요하죠
이문제 제헌이 모의고사에 나오나요?
안나옵니다 ㅋㅋ 새로 제작한 문항입니다.
제가 하나씩 업로드 하는 문제들은 새로 만들거나, 모의고사 탈락문항 등입니다~
점b의좌표가 1,k/2 아닌가요? 가로+2.세로+k 해서 P좌표구햇는데 설명좀요 ㅠㅠ
A->B로 점을 이동시킬 때, x축으로-k/2, y축으로 1만큼 이동시켜야 해요
감사합니다 직관적으로 알아야되는건가요???
아뇨 ㅋㅋ 점의 평행이동 고1 때 배웠던 내용으로 설명 가능합니다.
sol 2)가 의도입니다. ㅎㅎ 대부분 이렇게 푸셨을거같네요
꿀잼 ㄱㅅ요ㅎㅎ
^^
이런 난이도의 문제는 보통 몇분안에 푸는게 좋을까요???
5~10분 사이면 적절할것 같아요
ㅋ 법선기울기 그냥 음수만 붙여서 잠깐 혼선
ㅎㅎ
ㅋㅋ이런문제 재밌음
이 정도면 19번에 나올법한 난이도인가요????
글쎄요 ㅋㅋ 현19번보다 더 어려울거같기도 하고
ㅋㅋ 그러게요 6평 19번보다는 확실히 어렵네욤 ㅋㅋㅋ