(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
게시글 주소: https://a.orbi.kr/0008742407
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
군대 확정됨.. 1
수송병이니 운전 열심히 하고 나오면 그래도 운전 실력 하나는 얻고 나오겠네요 ㅠ
-
와랄라마렵다
-
교육과정 바뀌면 1
바뀌기 전 마지막 수능을 치르는 해에 (그니까 2027 수능) 응시자 수가 더 많이 늘어날까요??
-
미적 vs 확통 1
확통에서 3개 맞아서 재수하랴고 하는데 미적할까.. 완전 초반이랑 통계는 풀 수...
-
진성 삼엽충이라 2
Z플립이랑 버즈3 사고싶은데 몇달만 참으면 반값 될 것 같아서 못사겠다
-
역사적인 순간 ㄷㄷ
-
얼버기 2
-
작년에 스나 해보니까 ㄹㅇ 피말려서 수명깎임
-
교사 월급이 어케되남 먹고 자기에는 부족한가
-
근데 내년에도 사탐이 어려울지 아닐지는 모르는거 아님? 4
메디컬가려고 사탐하는 사람들은 그럼 확실하지 않은거에서 일단 고 이러면서...
-
으헤헤
-
여캐 일러투척 4
ㅎㅎ
-
일식이요
-
0에 수렴할까요.. 하나 고치려는 순간 종쳐서…………………. 40점 됐는데…………..
-
1년더 해야되는데 화학 1 탈출해야하나 말아야 하나 너무 고민입니다 47받는순간...
-
국수영생윤정법 87 81 2 97 89 홍대 인자전이랑 동국대 열린전공이 군이...
-
질문하는 듯 하다가 본인 or 자식 자랑만 늘어놓는 화법 정말 별로임 울학교 경비...
-
23수능 미적 6
이때 풀면서 걍 ㅈㄴ 쫄렸음 14번 얼탱이 없는애가 갑자기 튀어나왔는데 ㄷ이 진짜...
-
나이차vs외모 3
10살연상 존예vs 나이차얼마나지 않는 평범녀
-
지금 강기분 토오전반 대기번호 520번대에서 3주만에 251번으로 줄었는데 개강전에...
-
세개 다 현장 응시 23>>24=25 23수능을 넘는 수학시험은 앞으로 안나올거같음...
-
더 친절한가요 아무래도
-
생각해보셈.
-
25수능 수학 틀린 번호는 15 20 21 22 (미적) 27 28 29 30...
-
보면 사람들 물타기도 심하고 정답을 정해놓고 사고하는 것 같음
-
어문에서 경영으로 복전하는 것만큼 경쟁률이 많이 치열해요???
-
올해 수능 44166입니다 화작 미적 생명 지구이고요 중학교 때 전교 1등으로...
-
GOAT
-
이시절 수학 진짜 좆같았는데 이때(23) 비해서 요새 솔직히 많이 쉬워졌다고 생각함
-
벌륨매직마렵 2
ㅗㅇ유ㅠㅇ우우웅
-
ㅈㄱㄴ
-
질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
-
화1 3 2
화1 42점 3될까요??
-
국어 85 수학 88 국어는 수능 기조 바뀐 후로 극복이 안 되네. 수능 기조...
-
넌 수능 봐라
-
뭐하지…
-
성적...? 헤으응
-
아는 지인이 오늘 서울대 수학과 면접 봤는데 면접 방식이 수학문제 풀기라는 거...
-
얘드라 하이하잉 4
-
재수 한국교원대 삼수 약대임 ㅋㅋ 지금봐도 ㅈㄴ 올리긴했노
-
차라리 생1지1을 하는게 낳아요 문과분들도 과탐런하세요~
-
목표는 중경외시였지만 이번수능은 경북대가 최대인거같네요. 대학 가더라도 한번 더...
-
ㅊㅊ
-
고데기했다 11
흐흐
-
지방메디컬은 사탐 허용 학교가 희귀함. 몇개 있다는데 일일히 찾긴 너무 많아서...
-
걍 투과목 표점 1
떡상하게 해주세요
-
그.. 대학을 안 물어보시고 전공만 물어보셔서 대답해드렸더니 오해를 산 것 같네..
-
파이널집 들으면서 늘 그 생각함
-
ㅠㅠ 우리엄마 6평9평보고 기대 많이 하시던데 하..
-
재수하는데 빨리 사서 풀고싶음
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다