어떻게 한 점과 법선벡터로 평면이 정의될까?+벡터는 왜 필요할까? & 치환적분과 부분적분은 어떻게 할까?
게시글 주소: https://a.orbi.kr/00013005601
공부는 그저 앉아있기만 해서 느는 것이 아닙니다. 성장하고 발전해야합니다.
그러므로, 질문의 중요성은 강조해도 지나치지 않습니다.
교과서에도 계속해서 질문을 여러분께 건네주곤 합니다. 한번 예를 들어볼까요?
(출처 : 미X엔 미적분 2 교과서 본문)
이런 식으로 교과서의 본문에서도 질문을 건네주고 시작합니다.
그렇다면, 여러분이 위 질문으로 당연히 생각해야하는 것은 이런것입니다.
왜 삼각함수의 값의 부호가 그렇게 될까?
왜 삼각함수의 합을 하나의 삼각함수로 나타내야할까?
시간이 된다면 그 역사를 공부하는 것도 좋지만, 그게 아니더라도 어디에 쓰이는지는 정리해주셔야합니다.
이렇게 생각하면서 공부하는 방식이 여러분의 공부에 필요합니다.
그래야 여러분이 더 확실한 개념을 가지게 됩니다. 모르는 것을 채워나가게 됩니다.
그것이 제가 질문칼럼을 올리고 있는 이유입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
- 공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요http://orbi.kr/00011893846/
이 점은 변곡점인가요? & 정규분포의 표준화는 왜하는걸까? https://orbi.kr/00012108382
정규분포의 표준화는 왜하는걸까? & 변곡점은 어떤 점일까?
https://orbi.kr/00012254198
저번 칼럼은 이거였습니다!
변곡점은 어떤 점일까? & 어떻게 한 점과 법선벡터로 평면이 정의될까? & 벡터는 왜 필요할까? https://orbi.kr/00012680627
갑니다.
바쁘신분은 8분 52초부터 보세여.
요약하자면 다음과 같습니다.
방향벡터는 기울기와 같습니다.
하지만 우리는 u벡터=(a,b)와 기울기 m=b/a가 같음을 알지만
u벡터가 (a,b,c)만 되어도 기울기로 표현하기 힘든 것을 압니다.
기울기는 결국 y의 변화량을 x의 변화량으로 나눈것입니다.
3차원에서는 그 변화량을 알고싶지만, 분수로 표현하기에는 너무나 많은 것입니다.
그래서 벡터로 표시했으며, 이 방향벡터는 성분 하나로 표시된 위치벡터이기에 각을 구하기도 쉽습니다.
원점 O를 시점으로 하므로, 원점을 중심으로 회전한 정도를 구하면 되니까요!
또한, 평면의 결정조건과 연결지어서 평면의 방정식을 구해보았습니다.
그리고, 제발 공간도형 파트의 평면의 결정조건, 도형사이의 위치관계에 대한 공부는 하시길바랍니다.
다음 칼럼 주제 갑니다.
질문은 이렇게나 중요합니다.
우리가 모르는 것이 질문으로 나오기 마련입니다.
반드시, 질문을 해결하시면서 공부하시길 바랍니다. 지금 하고있는 공부에 질문만 추가하셔도 좋습니다.
공부는 그저 앉아있기만 해서 느는 것이 아닙니다. 성장하고 발전해야합니다.
답은 다음 칼럼에 달겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅇ
-
혹시나 해서.
-
사람이 많네 원래 보던 사람만 있었는데
-
흠냐링뇨 0
아함 쩝
-
58명남았다 1
곧있으면 우린 하나야
-
제가…저기에서 딱딱하게 말한 부분이 잇어요?? 어디서 불편했던거지…ㄹㅇ 대충 제가...
-
잘자티비 2
반말미안티비 좋은꿈꾸라구몬
-
그러니까 빨리 팔아달라고 킅런트야.... 연휴 끝나면 그.. 올려줄꺼지??
-
자꾸 결국 발생하지도 않은 일 갖다가 마음 졸이고 있는데 어쩌죠 6
예를 들어 제가 올해 4합8 간신히 맞췄는데 4합8 못 맞췄으면 어쩔 뻔했나 이런 식으로
-
중산고였는데 문이 철문이고 조명이 개음산함 종소리도 무섭고
-
이번 정시에서 사탐2로 약대 안정권 뜨신 분 성적이 어케 되시나요
-
진짜 위험할수도 있을거라는걸 깨달음
-
고2 수1 내신도 결국 수능 난이도 안벗어나니까 그거 대비도 하고 어려운 경험 미리...
-
국어 인강만듣다 독학 첨으로 해보려는데..피램 독서 문학 둘다 좋나요? 0
제가 그냥 독서 문학 둘다 너무 취약해서.. 피램은 문학이 더 좋나요? 독서가 더 좋나요?
-
나만그런가 칠판강의보다 A4용지 손해설이 강의량도 적고 집중과 습득이 잘되더라
-
아이돌하나도 몰라서 다 구분이 안돼...
-
과탐이랑 언매 본다 했을때 최소 어디까진 받아야 쓸만하다고 할 수 있ㅇ나여 올...
-
해봄? 할짓이못됨ㄹㅇ
-
주량 기준 알려줘 13
얼굴 빨개지는거 알딸딸한거 속 뒤집어지는거 필름 끊기는거 기준이 뭐여
-
예산은 넉넉한데..
-
수능날 오열한 썰 아빠가 친척집에 다털어버렸다 개쪽팔리네~
-
레즈 백합물임요 ㅇㅇ...
-
으음
-
본인 딱 세병
-
근데 너무 힘들다 이제 잡니다 ㅎㅎ 밤동안 댓 달아주시면 또 구분해드릴게요
-
한문장 읽다가 졸고 한문장 읽다가 졸고 글자 다튕겨서 쉽게풀어설명해주는데도 하나도 이해안되고,,
-
이때가 명곡의 시대인데
-
연애하고싶다 3
애인사귀고싶어
-
25끝나고는 절망 밖에 안남더라
-
나는 84일까 88일까 걱정했는데 결과적으로 86이었음 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
친구랑 채점 매고 넋이 나가버려서 자책을 엄청 했어요
-
남르비들만 ㅇㅈ하라고 쪽지 보내야 하니까
-
솔랭에서도 어떻게 비디디 해줘!! 일수가 있지..
-
수능 수학을 ㅈ박아서 진학사도 안 사고 단순 백분위 합으로 인서울 하위권 대학...
-
수학 77점이 2는 뜰거라고 생각했는데
-
사문 - 이새낀 오르비에서 답 맞춰보자는 사람들이랑 답맞췄더니 그대로면 35점인가...
-
ㅇㅈ 10
펑
-
대학가면 화석취급임? 14
군인 04인데 대학가면 신입생이 07임ㅋㅋ 내가 이성적인 감정을 느끼면 좀 이상한놈인가
-
난 닝닝이조음 4
이쁘잖아~
-
이상한쿨찐병이 2
인간관계엔 없는데 다른거에 조금 있는듯 수능 보기전엔 ‘수능 망해봐야 뭐 그냥...
-
선착 15명.
-
25수능 끝나고 6
진짜 맨정신으로 채점하다가는 자살할까봐 술먹고 채점했음
-
수학개념 0
갑자기 궁금해서 쓰는데요 시발점이나 개념원리 같은걸로 개념 땔 때 어느정도 기간안에...
-
무물보 10
고대 수리논술로 감
-
뉴런하기전에 0
뉴런-한완기 생각중인데 지금 어삼쉬사 풀고잇어요 어삼쉬사 끝나고 대가리깨지면서...
-
헤이유 3
지금 뭐해?
-
체화가 잘 더 잘 되는 느낌임 주간지 때매 그런진 모르겠는데 든든함 뭔가 걍 3모...
-
어떻게하면 내 과외생을 조금이라도 더 잘 이해시킬수있을까 1
내 수업이 너무 어렵나 근데 공부는 어렵게 하는게 맞다고 생각하는데
-
25수능 끝나고 0
오늘 학교 안 가서 좋았다 생각했음
많은 의견과 질문바랍니다. 답변드릴게요.
좋은 글 감사합니다~~
학생들이 미분에서 가장 중요시 생각해야 할점을 종종 물어보곤하는데 저는 그래프개형이라고 말하곤합니다 올바른것일까요..?
저는 기울기를 언급합니당
접선의 기울기. 즉, 접선이 왜 필요한지를 생각합니다.
그리고 증가감소와 극대극소를 이용해서 그래프를 그리고 해석합니다.
이 두가지인 것 같습니다.
미분한다는 것은 ~ 에서 오타 있네요
lim x->0 을 h->0으로 ...!
아 맞습니다. 감사합니다.
흥미로운 칼럼을 써주셔서 감사합니다. 항상 재밌게 읽고 있습니다.
감사합니다
위치+방향or내적
궁금한게 있습니다.
칼럼의 주제와 관계는 없지만, "미분가능한 함수를 미분하면 그도함수의 연속성을 보장할수없다"라는것을 교과개념에서 유추할수있나요? 일단, "적분과 미분과의 관계를 적용가능할 조건이 f가 연속인데, 부정적분관점에서 보면 f는 도함수이고
도함수가 연속인 함수는 미분가능하다"라고는 유추가 가능하지만, 앞에서 언급한 부분은 가능한지 모르겠습니다.
미적분 1의 개념으로 이해하고 유추할 수 있습니다.
도함수가 연속인 함수는 미분가능하다는 말은 맞습니다. 미분가능의 정의는 미분계수정의에서 좌, 우극한이 같아 함수의 극한이 존재할때 성립합니다. 연속이라는 것은 극한과 함숫값이 같다는 것입니다.
이 상황에선 도함수의 극한이 존재한다는 것입니다.
다만, 미분가능하다는 말로 도함수의 연속을 보장할 수는 없습니다.
미분가능하다는 말은 극한값이 존재한다는 말인데, 연속은 극한값과 함숫값이 같을때를 말합니다. 함숫값까지 존재한다고 보장할수는 없습니다.
치환적분은 합성함수 미분법 역연산이라고 볼 수 있고, 부분적분은 곱의 미분법의 역연산이라고 볼수 있고,
피적분함수의 형태가 복잡할 때, 합성함수/ 함수의 곱 꼴을 잘 적용시켜서 적분을 하는 것인가요??